The Matching and Mosaic of the satellite imagery play an essential role in many remote sensing and image processing projects. These techniques must be required in a particular step in the project, such as remotely change detection applications and the study of large regions of interest. The matching and mosaic methods depend on many image parameters such as pixel values in the two or more images, projection system associated with the header files, and spatial resolutions, where many of these methods construct the matching and mosaic manually. In this research, georeference techniques were used to overcome the image matching task in semi automotive method. The decision about the quality of the technique can be considered if the error value is less than half a pixel. The projection-based method was used to ensure the mosaic process. The test images are satellite imagery with medium spatial resolutions; these images were processed to ensure the results. In matching techniques, the different sensor images (different in resolutions) were investigated using image resize and sampling. The results were obtained using many remote sensing packages and written programs in Matlab environmental.
The escalating development of technology is one of the distinctive features of the communication environment in the field of sending and receiving satellite broadcasts of television channels in general and Iraqi satellite channels in particular, which contributed to the wide and rapid spread and reaching outside the drawn boundaries and bypassing even natural obstacles, and what is important in this is the communication content that these broadcasts Channels and its impact on the recipient due to the media, cultural, educational and entertainment content it provides, and in our research we will analyze the communication content of the Iraqi satellite channel by choosing one of its dialogue programs that coincided with the events of the l
... Show MoreThe Taylor series is defined by the f and g series. The solution to the satellite's equation of motion is expanding to generate Taylor series through the coefficients f and g. In this study, the orbit equation in a perifocal system is solved using the Taylor series, which is based on time changing. A program in matlab is designed to apply the results for a geocentric satellite in low orbit (height from perigee, hp= 622 km). The input parameters were the initial distance from perigee, the initial time, eccentricity, true anomaly, position, and finally the velocity. The output parameters were the final distance from perigee and the final time values. The results of radial distance as opposed to time were plotted for dissimilar times in
... Show MoreThis research aims at identifying the commitment of satellite news channels in Arabic to the set of important standards that reflect their credibility in dealing with the media material, and considering that these channels give special importance to events in Iraq, as well as the Arab region and the world, decide to choose them and study them with a problem The research was a question about the level of credibility of Iraqi media. This research is descriptive research, which used the survey method on an objective sample of 245 items, while the questionnaire was used as a data collection tool. Seven channels were selected in Arabic for the study. The three most watched channels were chosen. These channels included the channels of Russia t
... Show MoreThe phenomenon of terrorism is one of the most serious challenges facing the world at present. So this concept has occupied a great deal of interest of researchers and scholars in the relevant disciplines. There is no doubt that the study of the concept of terrorism requires a study of its various aspects. However, this study will be limited to knowing the role of television channels in providing the public with information about terrorist events, the extent to which young people rely on these channels to shape their attitudes towards terrorism issues. This study also seeks the relationship between satellite television channels and terrorism based on the relevant media li
... Show MoreCorona virus sickness has become a big public health issue in 2019. Because of its contact-transparent characteristics, it is rapidly spreading. The use of a face mask is among the most efficient methods for preventing the transmission of the Covid-19 virus. Wearing the face mask alone can cut the chance of catching the virus by over 70\%. Consequently, World Health Organization (WHO) advised wearing masks in crowded places as precautionary measures. Because of the incorrect use of facial masks, illnesses have spread rapidly in some locations. To solve this challenge, we needed a reliable mask monitoring system. Numerous government entities are attempting to make wearing a face mask mandatory; this process can be facilitated by using face m
... Show MoreGroupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show More