Preferred Language
Articles
/
FxYvlocBVTCNdQwCw1ek
The Effect of Window Size Changing on Satellite Image Segmentation Using 2D Fast Otsu Method

Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Window Size Changing on Satellite Image Segmentation Using 2D Fast Otsu Method

     Multispectral remote sensing image segmentation can be achieved using a multithresholding technique. This paper studies the effect of changing the window size of the two dimensional (2D) fast Otsu algorithm that presented by Zhang. From the results, it shown that this method behaves as a search machine for the valleys (an automatic threshold), between the gray levels of the histogram with changing the size of slide window.  

Keywords Image Segmentation, (2D) Fast Otsu method, Multithresholding, Automatic thresholding, (2D) histogram image.

View Publication Preview PDF
Publication Date
Sat Nov 02 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Images Segmentation Based on Fast Otsu Method Implementing on Various Edge Detection Operators

Publication Date
Thu Mar 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Images Segmentation Based on Fast Otsu Method Implementing on Various Edge Detection Operators

The present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.

View Publication Preview PDF
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Adaptive Canny Algorithm Using Fast Otsu Multithresholding Method

   In this research, an adaptive Canny algorithm using fast Otsu multithresholding method is presented, in which fast Otsu multithresholding method is used to calculate the optimum maximum and minimum hysteresis values and used as automatic thresholding for the fourth stage of the Canny algorithm.      The new adaptive Canny algorithm and the standard Canny algorithm (manual hysteresis value) was tested on standard image (Lena) and satellite image. The results approved the validity and accuracy of the new algorithm to find the images edges for personal and satellite images as pre-step for image segmentation.  
 

View Publication Preview PDF
Publication Date
Tue Dec 03 2013
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means

Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means

Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.

View Publication Preview PDF
Crossref
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Image Segmentation Using Superpixel Based Split and Merge Method

A super pixel can be defined as a group of pixels, which have similar characteristics, which can be very helpful for image segmentation. It is generally color based segmentation as well as other features like texture, statistics…etc .There are many algorithms available to segment super pixels like Simple Linear Iterative Clustering (SLIC) super pixels and Density-Based Spatial Clustering of Application with Noise (DBSCAN). SLIC algorithm essentially relay on choosing N random or regular seeds points covering the used image for segmentation. In this paper Split and Merge algorithm was used instead to overcome determination the seed point's location and numbers as well as other used parameters. The overall results were better from the SL

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Satellite image classification using proposed singular value decomposition method

In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Shadow Removal Using Segmentation Method

Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Fast Temporal Video Segmentation Based on Krawtchouk-Tchebichef Moments

View Publication
Scopus (37)
Crossref (39)
Scopus Clarivate Crossref