Preferred Language
Articles
/
jcoeduw-919
Medical Image Segmentation using Modified Interactive Thresholding Technique

Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform well in certain medical image applications.The aim of this paper is to change the medical image into something that is more meaningful and easier to analyze and recognize features that helps the doctors to diagnoses the diseases .This paper views selected medical image and segmentation method that have been proposed, which are suitable for processing medical images by use the modification of the traditional interactive threshold technique. This method gave good results,and these results are testedaccordingto the measure of quality (PSNR).

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 06 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Scopus (2)
Scopus Crossref
View Publication
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Shadow Removal Using Segmentation Method

Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.

View Publication Preview PDF
Publication Date
Mon Dec 10 2018
Journal Name
Aro-the Scientific Journal Of Koya University
Membrane Computing for Real Medical Image Segmentation

In this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Medical Ultrasound Image Quality Enhancement and Regions Segmentation

     Medical Ultrasound (US) has many features that make it widely used in the world. These features are safety, availability and low cost. However, despite these features, the ultrasound suffers from problems. These problems are speckle noise and artifacts. In this paper, a new method is proposed to improve US images by removing speckle noise and reducing artifacts to enhance the contrast of the image. The proposed method involves algorithms for image preprocessing and segmentation. A median filter is used to smooth the image in the pre-processing. Additionally, to obtain best results, applying median filter with different kernel values. We take the better output of the median filter and feed it into the Gaussian filter, which then

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jun 20 2014
Journal Name
Jurnal Teknologi
A Review of Snake Models in Medical MR Image Segmentation

Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal

... Show More
Scopus (10)
Scopus
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Sep 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Digital Rock Samples Porosity Analysis by OTSU Thresholding Technique Using MATLAB

Porosity plays an essential role in petroleum engineering. It controls fluid storage in aquifers, connectivity of the pore structure control fluid flow through reservoir formations. To quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. Porosity estimation of digital image utilizing image processing essential for the reservoir rock analysis since the sample 2D porosity briefly described. The regular procedure utilizes the binarization process, which uses the pixel value threshold to convert the color and grayscale images to binary images. The idea is to accommodate the blue regions entirely with pores and transform it to white in r

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Bio-inspired Computing – Theories And Applications
Scopus (10)
Crossref (5)
Scopus Crossref
View Publication
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
Adaptive Medical Image Watermarking Technique based on Wavelet Transform

In this paper, an adaptive medical image watermarking technique is proposed based on wavelet transform and properties of human visual system in order to maintain the authentication of medical images. Watermark embedding process is carried out by transforming the medical image into wavelet domain and then adaptive thresholding is computed to determine the suitable locations to hide the watermark in the image coefficients. The watermark data is embedded in the coefficients that are less sensitive into the human visual system in order to achieve the fidelity of medical image. Experimental results show that the degradation by embedding the watermark is too small to be visualized. Also, the proposed adaptive watermarking technique can preserv

... Show More
View Publication Preview PDF