Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentation method of gray level CT images. The segmentation process is performed by using the Fuzzy C-Means (FCM) clustering method to detect and segment kidney CT images for the kidney region. The propose method is started with pre-processing of the kidney CT image to separate the kidney from the abdomen CT and to enhance its contrast and removing the undesired noise in order to make the image suitable for further processing. The resulted segmented CT images, then used to extract the tumor region from kidney image defining the tumor volume (size) is not an easy task, because the 2D tumor shape in the CT slices are not regular. To overcome the problem of calculating the area of the convex shape of the hull of the tumor in each slice, we have used the Frustum model for the fragmented data.
Always MRI and CT Medical images are noisy so that preprocessing is necessary for enhance these images to assist clinicians and make accurate diagnosis. Firstly, in the proposed method uses two denoising filters (Median and Slantlet) are applied to images in parallel and the best enhanced image gained from both filters is voted by use PSNR and MSE as image quality measurements. Next, extraction of brain tumor from cleaned images is done by segmentation method based on k-mean. The result shows that the proposed method is giving an optimal solution due to denoising method which is based on multiple filter types to obtain best clear images and that is leads to make the extraction of tumor more precision best.<
... Show MoreLK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2
Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t
... Show MoreMedical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w
... Show MoreA snake is an energy-minimizing spline guided by external
constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and motion tracking. We have used snakes successfully for segmentation, in which user-imposed constraint forces guide the snake near features of interest (anatomical structures). Magnetic Resonance Image (MRI) data set and Ultrasound images are used for our experiments.
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal
... Show MoreIn this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors. In this paper, tried to implement an automated segmentation methods of gray level CT images is used to provide information such as anatomical structure and identifying the Region of Interest (ROI) i.e. locate tumor, lesion and other in kidney.
A CT image has inhomogeneity, noise which affects the continuity and accuracy of the images segmentation. In
Medical Ultrasound (US) has many features that make it widely used in the world. These features are safety, availability and low cost. However, despite these features, the ultrasound suffers from problems. These problems are speckle noise and artifacts. In this paper, a new method is proposed to improve US images by removing speckle noise and reducing artifacts to enhance the contrast of the image. The proposed method involves algorithms for image preprocessing and segmentation. A median filter is used to smooth the image in the pre-processing. Additionally, to obtain best results, applying median filter with different kernel values. We take the better output of the median filter and feed it into the Gaussian filter, which then
... Show More