Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of the quarter that contains a tumor based on the centroid value of the cluster in this quarter, which is far from the centers of the remaining quarters. From the calculations conducted on several images' quarters, the experimental outcomes show that the centroid value of the cluster in each quarter was greater than 0.9 if this quarter did not contain a tumor while the value of the centroid value for the cluster containing a tumor was less than 0.4.For examples, in a quarter no.1 for STOMACH_1 medical image, the centroid value of the cluster was 0.973 while the value of the cluster centroid in quarter no.3 was 0.280. For this reason the tumor area was found in quarter no.(3) of the medical image STOMACH_1. Also, the centroid value of the cluster in a quarter no.2 was 0.948 for STOMACH_2 while, the value of the cluster centroid in quarter no.4 was 0.397. For this reason the tumor area was found in a quarter no.4 of the medical image STOMACH_2.
The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreThe research aims to evaluate the suppliers at Diyala general electric industries company conducted in an environment of uncertainty and fuzzy where there is no particular system followed by the company, and also aims to use the problem of traveling salesman problem in the process of transporting raw materials from suppliers to the company in a fuzzy environment. Therefore, a system based on mathematical methods and quantity was developed to evaluate the suppliers. Fuzzy inference system (FIS) and fuzzy set theory were used to solve this problem through (Matlab) and the problem of the traveling salesman in two stages was also solved by the first stage of eliminating the fuzzing of the environment using the rank function method, w
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
A medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s un
... Show MoreAbstract:
In light of the development in the banking environment and the increasing reliance on electronic systems in providing banking services and due to the intense competition witnessed by the banking sector, the need has emerged to apply the comprehensive electronic banking system, which works on the Internet in providing new and diverse banking services regardless of time and place by linking all branches to one central database, and despite the advantages achieved from the application of the comprehensive system, there is a set of risks that accompany the use of that system, What requires the auditors to develop the audit method in line with the size of the development in the
... Show More
Statistical control charts are widely used in industry for process and measurement control . in this paper we study the use of markov chain approach in calculating the average run length (ARL) of cumulative sum (Cusum) control chart for defect the shifts in the mean of process , and exponentially weighted moving average (EWMA) control charts for defect the shifts for process mean and , the standard deviation . Also ,we used the EWMA charts based on the logarithm of the sample variance for monitoring a process standard deviation when the observations (products are selected from al_mamun factory ) are identically and independently distributed (iid) from normal distribution in continuous manufacturing .
This study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreEnhancing quality image fusion was proposed using new algorithms in auto-focus image fusion. The first algorithm is based on determining the standard deviation to combine two images. The second algorithm concentrates on the contrast at edge points and correlation method as the criteria parameter for the resulted image quality. This algorithm considers three blocks with different sizes at the homogenous region and moves it 10 pixels within the same homogenous region. These blocks examine the statistical properties of the block and decide automatically the next step. The resulted combined image is better in the contras
... Show MoreThis paper determined the difference between the first image of the natural and the second infected image by using logic gates. The proposed algorithm was applied in the first time with binary image, the second time in the gray image, and in the third time in the color image. At start of proposed algorithm the process images by applying convolution to extended images with zero to obtain more vision and features then enhancements images by Edge detection filter (laplacion operator) and smoothing images by using mean filter ,In order to determine the change between the original image and the injury the logic gates applied specially X-OR gates . Applying the technique for tooth decay through this comparison can locate inj
... Show MoreThis research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.