Preferred Language
Articles
/
qBiYIpgBVTCNdQwC0bkm
A hybrid analytical method for fractional order Klein–Gordon and Burgers equations
...Show More Authors

Scopus
Publication Date
Thu Jun 01 2017
Journal Name
Chaos, Solitons & Fractals
A semi-analytical iterative method for solving nonlinear thin film flow problems
...Show More Authors

View Publication
Crossref (19)
Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Partial Differential Equations In Applied Mathematics
The modeling and mathematical analysis of the fractional-order of Cholera disease: Dynamical and Simulation
...Show More Authors

In this study, a cholera model with asymptomatic carriers was examined. A Holling type-II functional response function was used to describe disease transmission. For analyzing the dynamical behavior of cholera disease, a fractional-order model was developed. First, the positivity and boundedness of the system's solutions were established. The local stability of the equilibrium points was also analyzed. Second, a Lyapunov function was used to construct the global asymptotic stability of the system for both endemic and disease-free equilibrium points. Finally, numerical simulations and sensitivity analysis were carried out using matlab software to demonstrate the accuracy and validate the obtained results.

View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials & Continua
A New Hybrid Feature Selection Method Using T-test and Fitness Function
...Show More Authors

View Publication
Scopus (11)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Block Method for SolvingState-Space Equations of Linear Continuous-Time Control Systems
...Show More Authors

This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Analytical Solutions for Advanced Functional Differential Equations with Discontinuous Forcing Terms and Studying Their Dynamical Properties
...Show More Authors

This paper aims to find new analytical closed-forms to the  solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
The Numerical Technique Based on Shifted Jacobi-Gauss-Lobatto Polynomials for Solving Two Dimensional Multi-Space Fractional Bioheat Equations
...Show More Authors

This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
Dynamic Routing Method over Hybrid SDN for Flying Ad Hoc Networks
...Show More Authors

Due to the high mobility and dynamic topology of the FANET network, maintaining communication links between UAVs is a challenging task. The topology of these networks is more dynamic than traditional mobile networks, which raises challenges for the routing protocol. The existing routing protocols for these networks partly fail to detect network topology changes. Few methods have recently been proposed to overcome this problem due to the rapid changes of network topology. We try to solve this problem by designing a new dynamic routing method for a group of UAVs using Hybrid SDN technology (SDN and a distributed routing protocol) with a highly dynamic topology. Comparison of the proposed method performance and two other algorithms is simula

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Recent modification of Homotopy perturbation method for solving system of third order PDEs
...Show More Authors

This paper presents new modification of HPM to solve system of 3 rd order PDEs with initial condition, for finding suitable accurate solutions in a wider domain.

Scopus (19)
Scopus
Publication Date
Sun Mar 01 2009
Journal Name
Diyala Journal Of Human Research
Stability of the Finite Difference Methods of Fractional Partial Differential Equations Using Fourier Series Approach
...Show More Authors

The fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).

View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Partial Differential Equations In Applied Mathematics
Improving the hepatitis viral transmission model’s dynamics by vaccination and contrasting it with the fractional-order model
...Show More Authors

We investigate mathematical models of the Hepatitis B and C viruses in the study, considering vaccination effects into account. By utilising fractional and ordinary differential equations, we prove the existence of equilibrium and the well-posedness of the solution. We prove worldwide stability with respect to the fundamental reproduction number. Our numerical techniques highlight the biological relevance and highlight the effect of fractional derivatives on temporal behaviour. We illustrate the relationships among susceptible, immunised, and infected populations in our epidemiological model. Using comprehensive numerical simulations, we analyse the effects of fractional derivatives and highlight solution behaviours. Subsequent investigatio

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref