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A B S T R A C T

In this study, a cholera model with asymptomatic carriers was examined. A Holling type-II functional response
function was used to describe disease transmission. For analyzing the dynamical behavior of cholera disease,
a fractional-order model was developed. First, the positivity and boundedness of the system’s solutions were
established. The local stability of the equilibrium points was also analyzed. Second, a Lyapunov function was
used to construct the global asymptotic stability of the system for both endemic and disease-free equilibrium
points. Finally, numerical simulations and sensitivity analysis were carried out using matlab software to
demonstrate the accuracy and validate the obtained results.
1. Introduction

A theoretical biology has been developed by connecting mathemat-
ics and infectious diseases to discuss many phenomena and ideas. To
explain such phenomena and problems, many predictions have been
made. Mathematical modeling is one of the most effective methods
for explaining the process and predicting its progress. Nevertheless, it
remains a major challenge to define biological principles and describe
them mathematically. In biological mathematics, numerous researchers
have paid considerable attention to construct models of population–
infectious diseases relationships. Several ideas have been introduced
to interpret and predict the dynamic behavior of infectious diseases
transmission especially investigating the stability of these models such
as: Influenza, Covid-19, Fever, Tuberculosis and Cholera.1–10

Cholera is an infectious disease caused by the bacterium Vibrio
Cholerae. The disease is characterized by severe diarrhea, dehydration
and leg cramps, and it can be fatal if untreated. Understanding the
dynamics of cholera transmission, including the role of asymptomatic
carriers, is crucial for effective control and prevention. In real, the
symptoms of this disease show after ingesting the water or contam-
inated food between (1–5) days. There are many eminent scholars
have studied the cholera spread such as: Brhane et al.11 studied the
modeling of transmission cholera disease. In12, Mukandavire et al.
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formulated a cholera mathematical model. Jackob et al. studied and
simulated cholera model with host infection effect and vaccination.13

Wang et al.,14 considered the dynamics of within-host cholera disease.
Al-arydah et al.15 studied the modeling cholera disease with education
and chlorination.

The fractional calculus because it can more precisely represent
intricate epidemiological processes. Memory effects, non-integer time
lags, and flexibility to better fit certain catchment characteristics are
some of the ways it accomplishes this. As a result, modeling accuracy
is increased, particularly when it comes to simulating the long-term
behaviors and scaling characteristics of epidemiological systems. As
well as, the fractional derivative improve our model by taking into
account the memory effect. Because it is a nonlocal operator, while
the classical ordinary derivative is a local operator which is unable to
model the hereditary properties and memory effect. Also, when cholera
infection spreads within a population, individuals acquire knowledge
about this disease. For more details, for the use and application of
fractional derivative in biology we have added the following references:
Hattaf and Mohsen studied the dynamics of a generalized fractional
modeling of corona virus with carrier effect16. Also, Gacem et al.,17

proposed a fractional mathematical model of SEIR epidemic model with
time delay. In18, Ahmad et al. studied a fractional smoking epidemic
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Fig. 1. Diagram of cholera model.

model. Also, other researchers have recently presented the modeling of
cholera disease using fractional-order derivative see19–29. The rest of
this paper is organized as follows. In Section 2, we present the cholera
model with a fractional-order effect. In Section 3, we analyze the model
by considering the boundedness, positivity and equilibrium points as
well as calculated the basic reproduction number. The local and global
stability of equilibrium points in Sections 4 and 5. In Section 6, numer-
ical simulations are carried out to enhance our comprehension of the
system’s dynamics. Additionally, a sensitivity analysis is conducted to
identify the crucial parameters of the system. Lastly, in Section 7, we
summarize the findings of this study as our conclusion.

2. Model formulation

The Cholera disease has caused a great deal of stress on the world
health system, leading to a high death toll. Some authors have utilized
mathematical models to study and analyze the outbreak of Cholera
disease. The authors in30 was proposed the classical Cholera model is
formulated by the following order differential equations system and the
diagram (Fig. 1):

𝑑 𝑆
𝑑 𝑡 = 𝜃 − 𝛽1𝑆 𝐵

𝐾1+𝐵
− 𝑑 𝑆 ,

𝑑 𝐼𝐴
𝑑 𝑡 = 𝜌𝛽1𝑆 𝐵

𝐾1+𝐵
− (𝛾𝐴 + 𝑑)𝐼𝐴,

𝑑 𝐼𝑆
𝑑 𝑡 = (1−𝜌)𝛽1𝑆 𝐵

𝐾1+𝐵
− (𝛾𝑆 + 𝑑 + 𝜇)𝐼𝑆 ,

𝑑 𝑅
𝑑 𝑡 = 𝛾𝐴𝐼𝐴 + 𝛾𝑆𝐼𝑆 − 𝑑 𝑅,
𝑑 𝐵
𝑑 𝑡 = 𝑟𝐵(1 − 𝐵

𝐾2
) − 𝜂 𝐵 + 𝜁1𝐼𝐴 + 𝜁2𝐼𝑆 .

(2.1)

Thus, in order to include the memory impact and the past history
to get a better understanding of the dynamics of Cholera disease under
Holling Type II functional response, we reformulate the model (2.1) by
using the Caputo fractional derivative as follows:
𝐷𝛼𝑆(𝑡) = 𝜃 − 𝛽1𝑆 𝐵

𝐾1+𝐵
− 𝑑 𝑆; 𝑆(0) > 0,

𝐷𝛼𝐼𝐴(𝑡) = 𝜌𝛽1𝑆 𝐵
𝐾1+𝐵

− (𝛾𝐴 + 𝑑)𝐼𝐴; 𝐼𝐴(0) ≥ 0,

𝐷𝛼𝐼𝑆 (𝑡) = (1−𝜌)𝛽1𝑆 𝐵
𝐾1+𝐵

− (𝛾𝑆 + 𝑑 + 𝜇)𝐼𝑆 ; 𝐼𝑆 (0) ≥ 0,
𝐷𝛼𝑅(𝑡) = 𝛾𝐴𝐼𝐴 + 𝛾𝑆𝐼𝑆 − 𝑑 𝑅; 𝑅(0) ≥ 0,
𝐷𝛼𝐵(𝑡) = 𝑟𝐵(1 − 𝐵

𝐾2
) − 𝜂 𝐵 + 𝜁1𝐼𝐴 + 𝜁2𝐼𝑆 ; 𝐵(0) ≥ 0.

(2.2)

Here, 𝐷𝛼 denotes the Caputo derivative for 0 < 𝛼 ≤ 1. While,
𝑆(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑅(𝑡) and 𝐵(𝑡) represent the densities at time t for
the susceptible humans, asymptomatic infectious humans, symptomatic
infectious humans, recovered humans and bacterial source of disease
respectively. It is assumed that males and females grows logistically.
Accordingly, the parameters can be described as in Table 1.
2 
Table 1
Definitions of model parameters.

Parameter Biological Meaning

𝜃 The birth rate,
𝛽1 The contact rate,
𝜌 ∈ [0, 1] The fraction rate,
𝐾𝑖 , 𝑖 = 1, 2 The carrying capacity,
𝑑 The death rate,
𝜇 The death rate due to disease from 𝐼𝑆 ,
𝛾𝐴 , 𝛾𝑆 The recovery rates,
𝑟 The intrinsic growth rate,
𝜂 The decay rate of 𝐵,
𝜁𝑖 , 𝑖 = 1, 2 Represents an increase in sources of infection,
𝑆(0), 𝐼𝐴(0), 𝐼𝑆 (0), 𝑅(0) and 𝐵(0) The initial points

3. Fundamental mathematical results and equilibrium points

In this section, the basic mathematical properties of the model are
explored. This consists of the positivity and boundedness of the solution
of model (2.2). Also, the computation of equilibrium points and basic
reproduction number. We assert that in the following subsections:

3.1. Positivity and boundedness

Now in this subsection, we show that, the model have a positive
solutions. First, we assume that the all parameters of fractional model
are positive, we get the following:
𝐷𝛼𝑆(𝑡)|𝑆=0 = 𝜃 > 0,
𝐷𝛼𝐼𝐴(𝑡)|𝐼𝐴=0 =

𝜌𝛽1𝑆 𝐵
𝐾1+𝐵

> 0,∀ 𝑆 > 0, 𝐵 > 0,

𝐷𝛼𝐼𝑆 (𝑡)|𝐼𝑆=0 =
(1−𝜌)𝛽1𝑆 𝐵

𝐾1+𝐵
> 0,∀ 𝑆 > 0, 𝐵 > 0,

𝐷𝛼𝑅(𝑡)|𝑅=0 = 𝛾𝐴𝐼𝐴 + 𝛾𝑆𝐼𝑆 > 0,∀ 𝐼𝐴 > 0, 𝐼𝑆 > 0,
𝐷𝛼𝐵(𝑡)|𝐵=0 = 𝜁1𝐼𝐴 + 𝜁2𝐼𝑆 > 0,∀ 𝐼𝐴 > 0, 𝐼𝑆 > 0.

(3.1)

As a result, we can observe that the solution of model (2.2) is
non-negative.

Theorem 1. Every solutions of model (2.2) are bounded.

Proof. Let 𝑁(𝑡) = 𝑆(𝑡) + 𝐼𝐴(𝑡) + 𝐼𝑆 (𝑡) + 𝑅(𝑡), then

𝐷𝛼𝑁(𝑡) ≤ 𝜃 − 𝑑 𝑁(𝑡).

Therefore,

𝐷𝛼𝑁(𝑡) + 𝑑 𝑁(𝑡) ≤ 𝜃 .

Taking the Laplace transform on both sided yields

(𝐷𝛼𝑁(𝑡)) = 𝜃
𝜆
− 𝑑(𝑁(𝑡)).

Simplifying this equation, we have the following inequality

(𝑁(𝑡)) ≤ 𝜃 𝜆−1
𝜆𝛼 + 𝑑

+
𝜆𝛼−1𝑁(0)
𝜆𝛼 + 𝑑

.

Now, taking the inverse Laplace transform and using the fact that

−1
[

𝜆−(𝛼−𝛽)

𝜆𝛽 − 𝛼

]

= 𝑡𝛼−1𝐸𝛽 ,𝛼(𝛼 𝑡𝛽 ), 𝛼 , 𝛽 > 0, 𝜆𝛼 > |𝛼| ,

where, 𝐸𝛼 ,𝛽(.) is the Mittag-Leffler function defined in31, we have
𝑁(𝑡) ≤ 𝜃 𝑡𝛼𝐸𝛼 ,𝛼+1(−𝑑 𝑡𝛼) +𝑁(0)𝐸𝛼 ,1(−𝑑 𝑡𝛼)

= 𝜃 𝑡𝛼𝐸𝛼 ,𝛼+1(−𝑑 𝑡𝛼) +𝑁(0)
[

−𝑑 𝑡𝛼𝐸𝛼 ,𝛼+1(−𝑑 𝑡𝛼) + 1
𝛤 (1)

]

≤ 𝜃 𝑡𝛼𝐸𝛼 ,𝛼+1(−𝑑 𝑡𝛼) + 𝜃
𝑑

[

−𝑑 𝑡𝛼𝐸𝛼 ,𝛼+1(−𝑑 𝑡𝛼) + 1
𝛤 (1)

]

= 𝜃
𝑑 𝛤 (1) =

𝜃
𝑑 .

(3.2)

Then, for any 𝑋(0), we have 𝑁(𝑡) ≤ 𝜃
𝑑 . Hence the feasible and

bounded region for model (2.2) initiate in 5 and
+
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𝛤 =
{

𝑆(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑅(𝑡) ∈ 4 ∶ 0 ≤ 𝑁(𝑡) ≤ 𝜃
𝑑 , 0 ≤ 𝐵 ≤ 𝑟𝐾2

4

}

.

3.2. Equilibrium points

In this subsection, since the variable 𝑅(𝑡) does not appear in other
equations of model (2.2), we can reduce this model and rewrite it

ithout 4th equation. Now, the fixed points are obtained from the
quilibrium state condition 𝐷𝛼𝑆(𝑡) = 0, 𝐷𝛼𝐼𝐴(𝑡) = 0, 𝐷𝛼𝐼𝑆 (𝑡) = 0 and
𝛼𝐵(𝑡) = 0. i.e.,
𝜃 − 𝛽1𝑆 𝐵

𝐾1+𝐵
− 𝑑 𝑆 = 0,

𝜌𝛽1𝑆 𝐵
𝐾1+𝐵

− (𝛾𝐴 + 𝑑)𝐼𝐴 = 0,
(1−𝜌)𝛽1𝑆 𝐵

𝐾1+𝐵
− (𝛾𝑆 + 𝑑 + 𝜇)𝐼𝑆 = 0,

𝑟𝐵(1 − 𝐵
𝐾2

) − 𝜂 𝐵 + 𝜁1𝐼𝐴 + 𝜁2𝐼𝑆 = 0.

(3.3)

Biologically, model (3.3) have two equilibrium points, namely:

• The infected free equilibrium point (IFEP), 𝐸1 =
(

𝜃
𝑑 , 0, 0, 0

)

.

Then, by the results of the method of the next generation matrix,
one obtains the basic reproduction number of system (3.3) as follows
and denoted by R0:

R0 = 𝑀 𝑎𝑥.
{(

𝑟𝜃 𝛽1𝜌𝜁1
(𝑑 𝜂3𝐾1)(𝛾𝐴 + 𝑑)

)

,
(

(1 − 𝜌)𝑟𝜃 𝛽1𝜁2
(𝑑 𝜂3𝐾1)(𝛾𝑆 + 𝑑 + 𝜇)

)}

. (3.4)

• The endemic equilibrium point (EEP), 𝐸2 =
(

𝑆2, 𝐼𝐴2, 𝐼𝑆2, 𝐵2
)

,

where

𝑆2 =
𝜃(𝐾1 + 𝐵2)

𝐺
, 𝐼𝐴2 =

𝜌𝜃 𝛽1𝐵2
𝐺(𝛾𝐴 + 𝑑)

, 𝐼𝑆2 =
(1 − 𝜌)𝜃 𝛽1𝐵2
𝐺(𝛾𝑆 + 𝑑 + 𝜇)

,

Here, 𝐺 = 𝛽1𝐵2 + 𝑑(𝐾1 + 𝐵2) while 𝐵2 is a positive root of the
following 4th order equation:

𝐴1𝐵
4
2 + 𝐴2𝐵

3
2 + 𝐴3𝐵

2
2 + 𝐴4𝐵2 = 0. (3.5)

Where,
𝐴1 = −𝑟(𝛽1 + 𝑑)(𝛾𝐴 + 𝑑)(𝛾𝑆 + 𝑑 + 𝜇) < 0,
𝐴2 = (𝛾𝐴 + 𝑑)(𝛾𝑆 + 𝑑 + 𝜇)

[

𝑟𝐾2(𝛽1 + 𝑑) − (𝑟𝐾1(𝛽1 + 2𝑑) + 𝜂 𝐾2(𝛽1 + 𝑑))
]

,
𝐴3 = 𝜃 𝛽1𝐾2

[

𝜌𝜁1(𝛾𝑆 + 𝑑 + 𝜇) + 𝜁2(1 − 𝜌)(𝛾𝐴 + 𝑑)
]

+ 𝑟𝐾1𝐾2(𝛽1 + 2𝑑)(𝛾𝐴 + 𝑑)(𝛾𝑆 + 𝑑 + 𝜇)
−
[

𝜂 𝐾1𝐾2(𝛽1 + 2𝑑)(𝛾𝐴 + 𝑑)(𝛾𝑆 + 𝑑 + 𝜇) + 𝑟𝑑 𝐾2
1 (𝛾𝐴 + 𝛾𝑆 + 2𝑑 + 𝜇)

]

,
𝐴4 = 𝐾1𝐾2

[

𝑟𝑑 + (𝛾𝐴 + 𝑑)
(

𝜃 𝛽1𝜁2(1 − 𝜌) − 𝑑 𝜂 𝐾1
)

+ (𝛾𝑆 + 𝑑 + 𝜇)
(

R0 − 1)] .

Now, Eq. (3.5) has a unique positive root and the endemic equilib-
ium point (EEP) exists when R0 > 1, that guarantees 𝐴4 > 0 with one
f the conditions 𝐴3 > 0 or 𝐴2 < 0 is holds.

In the next section, the local stability conditions of 𝐼 𝐹 𝐸 𝑃 and 𝐸 𝐸 𝑃
is performed. Both equilibrium points are discussed according to R0 and
using the Routh–Hurwitz criteria.

4. Local stability analysis

Theorem 2. If R0 < 1 and the following condition (4.1) is holds, then
the infected-free equilibrium point (IFEP) is strictly locally asymptotically
stable.

𝑟 < 𝜂 . (4.1)

Proof. The Jacobian matrix associated at (𝐼 𝐹 𝐸 𝑃 ) of model (3.3) is
iven by:

𝐽 (𝐸1) =

⎛

⎜

⎜

⎜

⎜

⎜

−𝑑 0 0 −𝜃 𝛽1
𝑑 𝐾1

0 −(𝛾𝐴 + 𝑑) 0 𝜌𝜃 𝛽1
𝑑 𝐾1

0 0 −(𝛾𝑆 + 𝑑 + 𝜇) (1−𝜌)𝜃 𝛽1
𝑑 𝐾1

⎞

⎟

⎟

⎟

⎟

⎟

, (4.2)
⎝
0 𝜁1 𝜁2 𝑟 − 𝜂

⎠

3 
with the characteristic equation
(𝜆 + 𝑑)

[

𝜆3 + 𝐶1𝜆
2 + 𝐶2𝜆 + 𝐶3

]

= 0. (4.3)

Where
𝐶1 = − (

𝑟 − 𝜂 − (𝛾𝐴 + 𝑑) − (𝛾𝑆 + 𝑑 + 𝜇)
)

,
𝐶2 = −(𝛾𝐴 + 𝑑)

(

𝑟 − 𝜂 − (𝛾𝑆 + 𝑑 + 𝜇)
)

− (𝑟 − 𝜂)(𝛾𝑆 + 𝑑 + 𝜇) − 𝜌𝜃 𝛽1𝜁1
𝑑 𝐾1

− (1−𝜌)𝜃 𝛽1𝜁2
𝑑 𝐾1

,

𝐶3 =
𝜃 𝛽1𝜁2(1−𝜌)(𝛾𝐴+𝑑)

𝑑 𝐾1
− (𝛾𝑆 + 𝑑 + 𝜇)

(

R0 − 1) ,
𝐶1𝐶2 − 𝐶3 = −(𝑟 − 𝜂)

(

(𝛾𝐴 + 𝑑)2 − (𝑟 − 𝜂)(𝛾𝑆 + 𝑑 + 𝜇)
)

+
(

𝑟 − 𝜂 − (𝛾𝑆 + 𝑑 + 𝜇)
) (

R0 − 1)
+
(

(𝑟 − 𝜂)(𝛾𝐴 + 𝑑)
) (

R0 − 1 − (𝛾𝑆 + 𝑑 + 𝜇)2
)

.

Since the first eigenvalue of Eq. (4.3) is 𝜆1 = −𝑑, and it is strictly
negative. Thus, the remaining other eigenvalues 𝜆𝑖, 𝑖 = 2, 3, 4 are
solution of Eq. (4.3).

Clearly, if the condition (4.1) is hold with R0 < 1, and according
to the Routh–Hurwitz criteria are necessary and sufficient for the
Matignon criterion 𝐶𝑖 > 0, 𝑖 = 1, 3, 𝐶1𝐶2 − 𝐶3 > 0 and |

|

𝑎𝑟𝑔(𝜆𝑖)|| > 𝛼 𝜋∕2
∀𝛼 ∈ (0, 1] , 𝑖 = 1, 2, 3, 4. Therefore, all eigenvalues have negative real
parts, we conclude that the infected-free equilibrium point (IFEP) of
the model (3.3) is locally asymptotically stable under condition (4.1).

Theorem 3. If R0 > 1 and the following conditions (4.4) are hold, then
the endemic equilibrium point (EEP) is strictly locally asymptotically stable.
𝑑 > 𝑀 𝑎𝑥.{𝜁1 − 𝛾𝐴, 𝜁2 − (𝛾𝑆 + 𝜇)

}

,
𝜂 𝐾2 + 2𝑟𝐵2 > 𝑟𝐾2.

(4.4)

Proof. The Jacobian matrix associated at (𝐸 𝐸 𝑃 ) of model (3.3) is given
by:

𝐽 (𝐸2) =
⎛

⎜

⎜

⎜

⎜

⎝

𝑞11 0 0 𝑞14
𝑞21 𝑞22 0 𝑞24
𝑞31 0 𝑞33 𝑞34
0 𝑞42 𝑞43 𝑞44

⎞

⎟

⎟

⎟

⎟

⎠

, (4.5)

where
𝑞11 = −

(

𝛽1𝐵2
𝐾1+𝐵2

+ 𝑑
)

; 𝑞14 =
−𝛽1𝐾1𝑆2
(𝐾1+𝐵2)2

; 𝑞21 =
𝜌𝛽1𝐵2
𝐾1+𝐵2

; 𝑞22 = −(𝜆𝐴 + 𝑑) ;
𝑞24 =

𝜌𝛽1𝐾1𝑆2
(𝐾1+𝐵2)2

; 𝑞31 =
(1−𝜌)𝛽1𝐵2
𝐾1+𝐵2

; 𝑞33 = −(𝜆𝑆 + 𝑑 + 𝜇) ; 𝑞34 =
(1−𝜌)𝛽1𝐾1𝑆2
(𝐾1+𝐵2)2

;

𝑞42 = 𝜁1 ; 𝑞43 = 𝜁2 ; 𝑞44 = 𝑟 − 𝜂 − 2𝑟𝐵2
𝐾2

.

By applying Gershgorin’s first theorem,32 we obtain that the all
eigenvalues of (4.5) have the negative real part when |

|

𝑞𝑖𝑖|| >
∑4

𝑖=1; 𝑖≠𝑗
𝑞𝑖𝑗

|

|

|

. Due to the high dimensionality of the system, and the highly
on-trivial Jacobian, an local stability analytical proof seems hardly
chievable. So, We conjecture that this is true of R0 > 1 and conditions
4.4). Thus, the numerical exploration of the model seems to confirm

this result. we conclude that the endemic equilibrium point (EEP) of
the model (3.1) is locally asymptotically stable.

5. Global stability analysis

Theorem 4. The model (3.3) at the infection-free equilibrium point (IFEP)
is GAS if R0 < 1 with the conditions (4.1) and (5.1)
8𝑑 𝛽1 < 𝑟 < 1. (5.1)

Proof. Let us define the positive function 𝑉1 as follows
𝑉1(𝑡) = (𝑆1(𝑡) − 𝑆(𝑡)) + 𝐼𝐴(𝑡) + 𝐼𝑆 (𝑡) + 𝐵(𝑡). (5.2)
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Fig. 2. Sensitivity analysis of the model according to the parameters related to R0.
The fractional derivative of order 𝛼 in the sense of Caputo of 𝑉1 can
be expressed as

𝐷𝛼𝑉1(𝑡) = −𝐷𝛼𝑆(𝑡) +𝐷𝛼𝐼𝐴(𝑡) +𝐷𝛼𝐼𝑆 (𝑡) +𝐷𝛼𝐵(𝑡). (5.3)

𝐷𝛼𝑉1(𝑡) = −𝜃 + 𝛽1𝑆 𝐵
𝐾1+𝐵

+ 𝑑 𝑆 + 𝜃 − 𝑑 𝑆1 +
𝜌𝛽1𝑆 𝐵
𝐾1+𝐵

− 𝛾𝐴𝐼𝐴 − 𝑑 𝐼𝐴 + (1−𝜌)𝛽1𝑆 𝐵
𝐾1+𝐵

−𝛾𝑆𝐼𝑆 − 𝑑 𝐼𝑆 − 𝜇 𝐼𝑆 + 𝑟𝐵(1 − 𝐵
𝐾2

) − 𝜂 𝐵 + 𝜁1𝐼𝐴 + 𝜁2𝐼𝑆 .

By utilizing the results in31 we get

𝐷𝛼𝑉1(𝑡) = 𝑑
(

𝑆 − 𝜃
𝑑

)

− (𝛾𝐴 + 𝑑 − 𝜁1)𝐼𝐴 − (𝛾𝑆 + 𝑑 + 𝜇 − 𝜁2)𝐼𝑆
+𝐵

[

(𝑟 − 𝜂) − 𝑟𝐵
𝐾2

+ 2𝛽1𝜃
𝑑(𝐾1+𝐵)

]

.

For R0 < 1 then 𝛾𝐴 + 𝑑 − 𝜁1 > 0 and 𝛾𝑆 + 𝑑 + 𝜇 − 𝜁2 > 0.
hus, 𝐷𝛼𝑉1(𝑡) ≤ 0 when the condition (5.1) is holds. Thus by LaSalle’s

invariance principle, we conclude that the infection-free equilibrium
point (IFEP) is globally asymptotically stable.

Theorem 5. The model (3.3) at the endemic equilibrium point (EEP) is
AS if R0 > 1 and under the following conditions

𝑈2
12 <

2
3𝑈11𝑈22,

𝑈2
13 <

2
3𝑈11𝑈33,

𝑈2
14 <

4
9𝑈11𝑈44,

𝑈2
24 <

2
3𝑈22𝑈44,

𝑈2
34 <

2
3𝑈33𝑈44,

(5.4)

We will mention all the symbols in the proof.

Proof. Let us define the positive function 𝑉1 as follows

𝑉2(𝑡) =
(

𝑆 − 𝑆2
)2

2
+

(

𝐼𝐴 − 𝐼𝐴1
)2

2
+

(

𝐼𝑆 − 𝐼𝑆1
)2

2
+

(

𝐵 − 𝐵2
)2

2
. (5.5)

The fractional derivative of order 𝛼 in the sense of Caputo of 𝑉2 can
be expressed as

𝐷𝛼𝑉2(𝑡) = (𝑆−𝑆1)𝐷𝛼𝑆(𝑡) + (𝐼𝐴−𝐼𝐴1)𝐷𝛼𝐼𝐴(𝑡) + (𝐼𝑆−𝐼𝑆1)𝐷𝛼𝐼𝑆 (𝑡) + (𝐵−𝐵1)𝐷𝛼𝐵(𝑡).

(5.6)
4 
Therefore, by simplify Eq. (5.6) according to model (3.3) we get
𝐷𝛼𝑉2(𝑡) = −

[

𝑈11
3
(𝑆 − 𝑆1)2 − 𝑈12(𝑆 − 𝑆1)(𝐼𝐴 − 𝐼𝐴1) + 𝑈22

2
(𝐼𝐴 − 𝐼𝐴1)2

]

−
[

𝑈11
3
(𝑆 − 𝑆1)2 − 𝑈13(𝑆 − 𝑆1)(𝐼𝑆 − 𝐼𝑆1) + 𝑈33

2
(𝐼𝑆 − 𝐼𝑆1)2

]

−
[

𝑈11
3
(𝑆 − 𝑆1)2 − 𝑈14(𝑆 − 𝑆1)(𝐵 − 𝐵1) + 𝑈44

3
(𝐵 − 𝐵1)2

]

−
[

𝑈22
2
(𝐼𝐴 − 𝐼𝐴1)2 − 𝑈24(𝐼𝐴 − 𝐼𝐴1)(𝐵 − 𝐵1) + 𝑈44

3
(𝐵 − 𝐵1)2

]

−
[

𝑈33
2
(𝐼𝑆 − 𝐼𝑆1)2 − 𝑈34(𝐼𝑆 − 𝐼𝑆1)(𝐵 − 𝐵1) + 𝑈44

3
(𝐵 − 𝐵1)2

]

.

By utilizing the conditions (5.4) we have

𝐷𝛼𝑉2(𝑡) ≤ −
[

√

𝑈11
3 (𝑆 − 𝑆1) −

√

𝑈22
2 (𝐼𝐴 − 𝐼𝐴1)

]2

−
[

√

𝑈11
3 (𝑆 − 𝑆1) −

√

𝑈33
2 (𝐼𝑆 − 𝐼𝑆1)

]2

−
[

√

𝑈11
3 (𝑆 − 𝑆1) −

√

𝑈44
3 (𝐵 − 𝐵1)

]2

−
[

√

𝑈22
2 (𝐼𝐴 − 𝐼𝐴1) −

√

𝑈44
3 (𝐵 − 𝐵1)

]2

−
[

√

𝑈33
2 (𝐼𝑆 − 𝐼𝑆1) −

√

𝑈44
3 (𝐵 − 𝐵1)

]2

Where
𝑈11 = 𝑑 + 𝛽1𝐵1(𝐵+𝐾1)

𝑍1
; 𝑈22 = 𝛾𝐴 + 𝑑 ; 𝑈12 =

𝜌𝛽1𝐵1(𝐵+𝐾1)
𝑍1

;

𝑈13 =
(1−𝜌)𝛽1𝐵1(𝐵+𝐾1)

𝑍1
; 𝑈14 =

𝛽1𝐾1𝑆
𝑍1

; 𝑈33 = 𝛾𝑆 + 𝑑 + 𝜇

𝑈34 =
(1−𝜌)𝛽1𝐾1𝑆1

𝑍1
+ 𝜁2 ; 𝑈44 = 𝜂 − 𝑟 + 𝑟(𝐵+𝐵1)

𝐾2
; 𝑈24 =

𝜌𝛽1𝐾1
𝑍1

+ 𝜁1.

Observe that 𝐷𝛼𝑉2(𝑡) = 0 at 𝐸2 =
(

𝑆2, 𝐼𝐴2, 𝐼𝑆2, 𝐵2
)

, and 𝐷𝛼𝑉2(𝑡) ≤
0 if R0 > 1 and the conditions (5.4) are satisfied. Hence, we con-
cluded that the endemic equilibrium point 𝐸2 is globally asymptotically
stable.

6. Numerical simulation

6.1. Sensitivity analysis

To study the impact of parameters on the model (3.3), we perform
a sensitivity analysis in this subsection. Sensitivity indices indicate
whether the parameters have a positive or negative impact on the
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Fig. 3. Results graphs of R0 according to the parameters of model (3.3).
model (3.3). We have discussed the sensitivity indices of the param-
eters on R0, to more info see33, Using methodology or approach, we
quantified the influence of each parameter. The results show that
describe main findings, e.g., certain parameters significantly increase
or decrease the basic reproduction number, highlighting their critical
role in the system’s behavior. Then, we put the parameters values as

𝜃 = 20 ; 𝛽1 = 0.01 ; 𝐾1 = 0.1 ; 𝑑 = 0.1 ; 𝜌 = 0.2 ; 𝛾𝐴 = 0.02 ; 𝛾𝑆 = 0.1;
𝜇 = 0.1 ; 𝑟 = 0.1 ; 𝐾2 = 80 ; 𝜂 = 0.3 ; 𝜁1 = 0.1 ; 𝜁2 = 0.1.

(6.1)
5 
Definition 1. The normalized forward sensitivity index of a variable
𝑊 is denoted by R0, and it is defined as:

𝛱R0
𝑊 =

𝜕R0
𝜕 𝑊 .𝑊

R0
.

The results of the sensitivity analysis indicate that the model pa-
rameters with a positive sensitivity index increase the value of R0
as they increase, meaning the disease will spread. Conversely, those
with a negative sensitivity index decrease the value of R as they
0
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Fig. 4. Model dynamics illustrating the global stability of the 𝐸2.
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Table 2
Sensitivity values of the parameters associated to R0.
Parameter Sensitivity indices

𝜃 1
𝛽1 0.996
𝜌 0.74
𝐾1 −0.97
𝑑 −0.789
𝜇 −0.892
𝛾𝐴 −0.166
𝛾𝑆 −0.332
𝑟 0.993,
𝜂 −0.254
𝜁1 0.975
𝜁2 0.952

increase, indicating that the disease will fade away. Therefore, the
normalized sensitivity index value for each parameter used in model
3.3) is summarized in Table 2 with shows the results in the Figs. 2

and 3.
Clearly, Fig. 3, it is clear that the system parameters have varying

effects on R0, increasing the value of certain parameters has a positive
mpact on R0, such as, 𝜃 , 𝛽1, 𝑟, 𝜌, 𝜁1, 𝜁2. While increasing the value of

other parameters has a negative impact for example 𝐾1, 𝑑 , 𝜂 , 𝜇 , 𝛾𝐴, 𝛾𝑆 .

6.2. Numerical analysis

In this subsection, we analyze the fractional-order derivative cholera
model (3.3) using the parameters specified in Eq. (6.1). We illustrate
the model’s equations graphically to study the disease dynamics. The
dynamics of the globally asymptotically stable endemic equilibrium
point 𝐸2 from various initial conditions are depicted in Fig. 4.

Obviously, Fig. 4 shows the ownership of model (3.3) using Dataset
(6.1) with a unique EE that is GAS. In the following we shows to the
6 
influence of infection rate 𝛽 on the dynamics of model (3.3) is shown
in Fig. 5.

Now, setting the infection rate value 𝛽 = 0.0001, and keeping the
ther parameter values from Eq. (6.1), we find that the trajectory

of model (3.3) approaches the infection-free equilibrium point 𝐸1, as
shown in Fig. 5.

According Fig. 5, decreasing the value of infection rate beta reduces
the stability of 𝐸2, and the model approaches to 𝐸1.

The numerical results of the model Eqs. (3.3) in response to the
ractional order memory index 𝛼 are presented in Figs. 6 and 7. The
holera model dynamics are described based on the choice of different
emory indices.

7. Conclusion and results

Mathematical modeling of cholera disease using fractional-order
ifferential equations with of both asymptomatic and symptomatic
ompartments provides a comprehensive understanding of the disease
ynamics. This approach allows for capturing the complexities and
emory effects in disease transmission, leading to better-informed
ublic health strategies and interventions. First, we have studied the
oundedness, positivity and equilibrium points as well as expression
f the epidemic threshold by R0 is derived of the proposed model.
he theoretical results implies that the system has a stable to infected-
ree equilibrium point (𝐼 𝐹 𝐸 𝑃 ) when R0 < 1 with condition (4.1)

and a unique endemic equilibrium point (𝐸 𝐸 𝑃 ) when R0 > 1 with
conditions (4.4). The (GAS) of each equilibrium points are established
using Lyapunov function. It is observed that the fractional order of the
derivative and basic reproduction number play a crucial role in the
stability behavior of the equilibrium points.

The numerical results show that the dynamical trajectories ap-
proaches to the equilibrium points as fast as the fractional order (𝛼 ⟶

1). Therefore, we can understand that the stability of the equilibrium
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Fig. 5. Model dynamics illustrating the global stability of the 𝐸1.

Fig. 6. Impact of fractional memory index 𝛼 on population at 𝐸2.

Partial Diϱerential Equations in Applied Mathematics 12 (2024) 100978 

7 



R.M. Yaseen et al.

f
g

c
i

Partial Diϱerential Equations in Applied Mathematics 12 (2024) 100978 
Fig. 7. Impact of fractional memory index 𝛼 on population at 𝐸1.
points is independent of different fractional-order derivatives, while the
fractional-order derivative only affects the time to reach the stationary
states. Also, the simulation works of the control problem suggest that
in the presence of memory, optimal application of treatment control re-
duces the number of infected individual (See Figs. 6 and 7). Moreover,
rom sensitivity analysis it is found that the birth, contact, intrinsic
rowth rates and the increase in sources of infection rate of cholera

have the negative effect on R0. But, the other parameters as death,
recovery and the decay rates have the positive effect on R0 (See Figs. 2
and 3).
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