The current research creates an overall relative analysis concerning the estimation of Meixner process parameters via the wavelet packet transform. Of noteworthy presentation relevance, it compares the moment method and the wavelet packet estimator for the four parameters of the Meixner process. In this paper, the research focuses on finding the best threshold value using the square root log and modified square root log methods with the wavelet packets in the presence of noise to enhance the efficiency and effectiveness of the denoising process for the financial asset market signal. In this regard, a simulation study compares the performance of moment estimation and wavelet packets for different sample sizes. The results show that wavelet p
... Show MoreIn this work a model of a source generating truly random quadrature phase shift keying (QPSK) signal constellation required for quantum key distribution (QKD) system based on BB84 protocol using phase coding is implemented by using the software package OPTISYSTEM9. The randomness of the sequence generated is achieved by building an optical setup based on a weak laser source, beam splitters and single-photon avalanche photodiodes operating in Geiger mode. The random string obtained from the optical setup is used to generate the quadrature phase shift keying signal constellation required for phase coding in quantum key distribution system based on BB84 protocol with a bit rate of 2GHz/s.
The objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show MoreIn this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)
A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
This paper is concerned with the design and implementation of an image compression method based on biorthogonal tap-9/7 discrete wavelet transform (DWT) and quadtree coding method. As a first step the color correlation is handled using YUV color representation instead of RGB. Then, the chromatic sub-bands are downsampled, and the data of each color band is transformed using wavelet transform. The produced wavelet sub-bands are quantized using hierarchal scalar quantization method. The detail quantized coefficient is coded using quadtree coding followed by Lempel-Ziv-Welch (LZW) encoding. While the approximation coefficients are coded using delta coding followed by LZW encoding. The test results indicated that the compression results are com
... Show MoreIn this paper, we introduce and discuss an extended subclass〖 Ą〗_p^*(λ,α,γ) of meromorphic multivalent functions involving Ruscheweyh derivative operator. Coefficients inequality, distortion theorems, closure theorem for this subclass are obtained.
We introduce a new class of harmonici multivalent functions define by generalized Rucheweyh derivative operator. We also obtain several interesting propertiesi such as sharp coefficienit estimates, distortioni bound, extreme points, Hadamardi product and other several results. Derivative; extreme points.