Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational characteristics of traffic flow types; by considering only the position of the selected bits from the packet header. The proposal a learning approach based on deep packet inspection which integrates both feature extraction and classification phases into one system. The results show that the FDPHI works very well on the applications of feature learning. Also, it presents powerful adequate traffic classification results in terms of energy consumption (70% less power CPU utilization around 48% less), and processing time (310% for IPv4 and 595% for IPv6).
In the current digitalized world, cloud computing becomes a feasible solution for the virtualization of cloud computing resources. Though cloud computing has many advantages to outsourcing an organization’s information, but the strong security is the main aspect of cloud computing. Identity authentication theft becomes a vital part of the protection of cloud computing data. In this process, the intruders violate the security protocols and perform attacks on the organizations or user’s data. The situation of cloud data disclosure leads to the cloud user feeling insecure while using the cloud platform. The different traditional cryptographic techniques are not able to stop such kinds of attacks. BB84 protocol is the first quantum cry
... Show MoreThis work represents study the rock facies and flow unit classification for the Mishrif carbonate reservoir in Buzurgan oil Field, which located n the south eastern Iraq, using wire line logs, core samples and petrophysical data (log porosity and core permeability). Hydraulic flow units were identified using flow zone indicator approach and assessed within each rock type to reach better understanding of the controlling role of pore types and geometry in reservoir quality variations. Additionally, distribution of sedimentary facies and Rock Fabric Number along with porosity and permeability was analyzed in three wells (BU-1, BU-2, and BU-3). The interactive Petrophysics - IP software is used to assess the rock fabric number, flow zon
... Show MoreDiscriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreFor many years, the construction industry damages have been overlooked such as unreasonable consumption of resources in addition to producing a lot of construction waste but with global awareness growth towards the sustainable development issues, the sustainable construction practices have been adopted, taking into account the environment and human safety. The research aims to propose a management system for construction practices which could be adopted during constructing different types of sustainable buildings besides formulating flowcharts which clarify the required whole phases of sustainable buildings life cycle. The research includes two parts: theoretical part which generally ,handles the sustainability concepts at construction i
... Show MoreThis research focused on clarifying the relationship strategic decisions for operations management & performance excellence organizational, The research emerges from a problem which explained by many application questions. Special questionnaire has been prepared for this purpose distributed (72) to sample of management levels (Top, middle) in the General company for mining industries and aquatic Insullation & the General company of batteries industry, The research has tried to test a number hypotheses related to the relation and regression among the variables of the research, and the differences among the <
... Show MoreThe research aimed to identify smart management capabilities of secondary school principals in education directorates in Baghdad according to the administrative intelligent and leadership competencies. The study used incentives as a descriptive method, by analyzing five main areas of smart management: strategic planning, self-awareness, skills, organization and culture. A purposive sample consisting of 102 secondary school principals from education directorates (Rusafa1) and (Karkh2), was taken to fill questionnaire the latter representing a complete sample of the target population. validated has been built an advanced measurement tool composed of 56 items across the five domains of strategic planning (21%), self-awareness (21%), culture (2
... Show MoreIntroduction: Methadone hydrochloride (MDN) is an effective pharmacological substitution treatment for opioids dependence, adopted in different countries as methadone maintenance treatment (MMT) programmes. However, MDN can exacerbate the addiction problem if it is abused and injected intravenously, and the frequent visits to the MMT centres can reduce patient compliance. The overall aim of this study is to develop a novel extended-release capsule of MDN using the sol-gel silica (SGS) technique that has the potential to counteract medication-tampering techniques and associated health risks and reduce the frequent visits to MMT centres. Methods: For MDN recrystallisation, a closed container method (CCM) and hot-stage method (HSM) were conduc
... Show More