Preferred Language
Articles
/
PhfZkI8BVTCNdQwCdnuC
Application of Healthcare Management Technologies for COVID-19 Pandemic Using Internet of Things and Machine Learning Algorithms
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Mar 01 2019
Journal Name
Journal Of Computational And Theoretical Nanoscience
Feasibility of Internet of Things Application for Real-Time Healthcare for Malaysian Pilgrims
...Show More Authors

Internet of Things (IoT) technology could be an effective solution to accomplish real-time retrieval of historical electronic health records (EHRs) to present better service of healthcare. In a pilgrimage environment such as the Hajj, IoT can be applied by identifying the non-local patients as electronic tags, and the tag data can be read by wireless sensors. The data that is collected using Radio-Frequency Identification (RFID) can be acquired from a Wireless Sensor Network (WSN) in order to accomplish many decisions, such as sending an ambulance to a patient’s location, sending an emergency alert to his immediate family circle, and retrieving his EHR from a database. The main contribution of this research is to propose a conceptual IoT

... Show More
View Publication
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Tue Dec 20 2022
Journal Name
2022 International Conference On Computer And Applications (icca)
Smart Healthcare Medical Bracelet using the Internet of Things
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Dec 20 2022
Journal Name
2022 International Conference On Computer And Applications (icca)
Smart Healthcare Medical Bracelet using the Internet of Things
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Ifip Advances In Information And Communication Technology
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu May 06 2021
Journal Name
International Journal Of Pharmacy Practice
Impact of COVID-19 pandemic on healthcare providers: save the frontline fighters
...Show More Authors
Abstract<sec><title>Objectives

The objective of this study was to assess the impact of the COVID-19 pandemic on healthcare providers (HCPs) at personal and professional levels.

Methods

This was a cross-sectional descriptive study. It was conducted using an electronic format survey through Qualtrics Survey Software in English. The target participants were HCPs working in any healthcare setting across Iraq. The survey was distributed via two professional Facebook groups between 7 April and 7 May 2020. The survey items were adopted with modifications from three previous studies of Severe Acute Respiratory Syndrome (SARS) and Avia

... Show More
View Publication
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu May 06 2021
Journal Name
International Journal Of Pharmacy Practice
Impact of COVID-19 pandemic on healthcare providers: save the frontline fighters
...Show More Authors
Abstract<sec><title>Objectives

The objective of this study was to assess the impact of the COVID-19 pandemic on healthcare providers (HCPs) at personal and professional levels.

Methods

This was a cross-sectional descriptive study. It was conducted using an electronic format survey through Qualtrics Survey Software in English. The target participants were HCPs working in any healthcare setting across Iraq. The survey was distributed via two professional Facebook groups between 7 April and 7 May 2020. The survey items were adopted with modifications from three previous studies of Severe Acute Respiratory Syndrome (SARS) and Avia

... Show More
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for New COVID-19 Cases Using Recurrent Neural Networks and Long-Short Term Memory
...Show More Authors

     This research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being  0.66975075, 0.470

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Medical Educators Satisfaction with Online Learning during the COVID-19 Pandemic:
...Show More Authors

Background: Medical educators’ dissatisfaction may cause them to leave the practice of teaching, where it is often hard to replace those who have left. In addition, medical teaching staff dissatisfaction may indicate adverse quality for institution/ university organizations.

Objectives: To assess teaching staff satisfaction with online learning during the COVID pandemic at Al-Nahrain University /College of Medicine, Baghdad/Iraq.

Methodology: A cross-sectional study included a convenient sample of 50% of the teaching staff participating in the online academic year 2020-2021. The faculty satisfaction questionnaire was taken from the "Bolliger and Halupa" study, based on th

... Show More
View Publication Preview PDF
Crossref