Preferred Language
Articles
/
qBZQs4oBVTCNdQwCsKM8
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational characteristics of traffic flow types; by considering only the position of the selected bits from the packet header. The proposal a learning approach based on deep packet inspection which integrates both feature extraction and classification phases into one system. The results show that the FDPHI works very well on the applications of feature learning. Also, it presents powerful adequate traffic classification results in terms of energy consumption (70% less power CPU utilization around 48% less), and processing time (310% for IPv4 and 595% for IPv6).

Scopus Crossref
View Publication
Publication Date
Tue Nov 01 2016
Journal Name
Iosr Journal Of Computer Engineering
Implementation of new Secure Mechanism for Data Deduplication in Hybrid Cloud
...Show More Authors

Cloud computing provides huge amount of area for storage of the data, but with an increase of number of users and size of their data, cloud storage environment faces earnest problem such as saving storage space, managing this large data, security and privacy of data. To save space in cloud storage one of the important methods is data deduplication, it is one of the compression technique that allows only one copy of the data to be saved and eliminate the extra copies. To offer security and privacy of the sensitive data while supporting the deduplication, In this work attacks that exploit the hybrid cloud deduplication have been identified, allowing an attacker to gain access to the files of other users based on very small hash signatures of

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 15 2020
Journal Name
Journal Of The College Of Education For Women
Data-Driven Approach for Teaching Arabic as a Foreign Language: Eygpt
...Show More Authors

Corpus linguistics is a methodology in studying language through corpus-based research. It differs from a traditional approach in studying a language (prescriptive approach) in its insistence on the systematic study of authentic examples of language in use (descriptive approach).A “corpus” is a large body of machine-readable structurally collected naturally occurring linguistic data, either written texts or a transcription of recorded speech, which can be used as a starting-point of linguistic description or as a means of verifying hypotheses about a language.  In the past decade, interest has grown tremendously in the use of language corpora for language education. The ways in which corpora have been employed in language pedago

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 09 2018
Journal Name
Baghdad Science Journal
Optimal UAV Deployment for Data Collection in Deadline-based IoT Applications
...Show More Authors

The deployment of UAVs is one of the key challenges in UAV-based communications while using UAVs for IoT applications. In this article, a new scheme for energy efficient data collection with a deadline time for the Internet of things (IoT) using the Unmanned Aerial Vehicles (UAV) is presented. We provided a new data collection method, which was set to collect IoT node data by providing an efficient deployment and mobility of multiple UAV, used to collect data from ground internet of things devices in a given deadline time. In the proposed method, data collection was done with minimum energy consumption of IoTs as well as UAVs. In order to find an optimal solution to this problem, we will first provide a mixed integer linear programming m

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
A Multi-variables Multi -sites Model for Forecasting Hydrological Data Series
...Show More Authors

A multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Bulletin Of Electrical Engineering And Informatics
Proposed model for data protection in information systems of government institutions
...Show More Authors

Information systems and data exchange between government institutions are growing rapidly around the world, and with it, the threats to information within government departments are growing. In recent years, research into the development and construction of secure information systems in government institutions seems to be very effective. Based on information system principles, this study proposes a model for providing and evaluating security for all of the departments of government institutions. The requirements of any information system begin with the organization's surroundings and objectives. Most prior techniques did not take into account the organizational component on which the information system runs, despite the relevance of

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Biomedical Signal Processing And Control
Decoding transient sEMG data for intent motion recognition in transhumeral amputees
...Show More Authors

View Publication
Scopus (28)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Sun Dec 16 2018
Journal Name
Al-academy
The Symmetries of the Interior Design of Fast Food Restaurants
...Show More Authors

The present research deals with the study of the symmetries of the design of interior spaces in fast food restaurants in terms of formality as it is an important element and plays a direct role in the spatial configuration, which is designed in both of its performance, aesthetic and expressive aspects. Since the choice of shapes is a complex subject that has many aspects imposed by functional and aesthetic correlations, the problem of the research is represented by the following question: (To what extent can the symmetries of the interior design be used in the spaces of fast food restaurants?)
The research acquires its importance by contributing to the addition of knowledge to researchers, scholars, companies and the specialized publ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 01 2017
Journal Name
Australian Journal Of Basic And Applied Sciences
Sprite Region Allocation Using Fast Static Sprite Area Detection Algorithm
...Show More Authors

Background: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to re

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 03 2017
Journal Name
Baghdad Science Journal
Scale-Invariant Feature Transform Algorithm with Fast Approximate Nearest Neighbor
...Show More Authors

There is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Mathematics
Face Recognition Algorithm Based on Fast Computation of Orthogonal Moments
...Show More Authors

Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima

... Show More
View Publication
Scopus (33)
Crossref (27)
Scopus Clarivate Crossref