Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational characteristics of traffic flow types; by considering only the position of the selected bits from the packet header. The proposal a learning approach based on deep packet inspection which integrates both feature extraction and classification phases into one system. The results show that the FDPHI works very well on the applications of feature learning. Also, it presents powerful adequate traffic classification results in terms of energy consumption (70% less power CPU utilization around 48% less), and processing time (310% for IPv4 and 595% for IPv6).
Abstract
The research Compared two methods for estimating fourparametersof the compound exponential Weibull - Poisson distribution which are the maximum likelihood method and the Downhill Simplex algorithm. Depending on two data cases, the first one assumed the original data (Non-polluting), while the second one assumeddata contamination. Simulation experimentswere conducted for different sample sizes and initial values of parameters and under different levels of contamination. Downhill Simplex algorithm was found to be the best method for in the estimation of the parameters, the probability function and the reliability function of the compound distribution in cases of natural and contaminateddata.
... Show More
Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show MoreAssessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreDigital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreSustainable vegetative management plays a significant role in improving soil quality in degraded agricultural landscapes by enhancing soil microbial biomass. This study investigated the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), and agroforestry buffers (ABs) on soil microbial biomass and soil organic C (SOC) compared with continuous corn (
importumt educational institution as (kindergartens) need teachers which qualified ownes modalities in their education for children , as Marzanu method in a way of learning and own methods of crisis management, because the teachers that own those styles of learning ginekindergarten children knowledge and the childrenIeaving based on theMeaing and knowledge and integration of their information, And teachers that earn methods of crisis management provide for the children of the kindergarten security within the educational institution which in turn affect the growth and development of the Child and then abilities, health physical, mental, psychological …etc.., The aims of the current research have identified to recognize: 1- the dimension
... Show MoreObjective: The study aimed to identify the adolescents' fast foods and snacks, and find out the relationship between fast
food, snacks and adolescents' demographic data (gender and Body Mass Index). Methodology: A descriptive study
was conducted on impact of fast foods and snacks upon adolescents' Body Mass Index in secondary schools at Baghdad
city, starting from 20
th of April 2013 to the end of October 2014. Non- probability (purposive) sample of 1254
adolescents were chosen from secondary schools of both sides of Al-Karkh and Al-Russafa sectors. Data was collected
through a specially constructed questionnaire format include (12) items multiple choice questions. The validity of the
questionnaire was determined thr
Ondansetron hydrochloride (ONH) is a very bitter, potent antiemetic drug used for the treatment and/or prophylaxis of chemotherapy or radiotherapy or postoperative induced emesis. The objective of this study is to formulate and evaluate of taste masked fast dissolving tablet (FDTs) of ONH to increase patient compliance.
ONH taste masked granules were prepared by solid dispersion technique using Eudragit E100 polymer as an inert carrier. Solvent evaporation and fusion melting methods were used for such preparation.
Completely taste masking with zero release of drug in phosphate buffer pH 6.8was obtained from granules prepared by solvent evaporation method using drug: polymer ratio of 1:2, from which four formulas pas
... Show More