Preferred Language
Articles
/
qBZQs4oBVTCNdQwCsKM8
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational characteristics of traffic flow types; by considering only the position of the selected bits from the packet header. The proposal a learning approach based on deep packet inspection which integrates both feature extraction and classification phases into one system. The results show that the FDPHI works very well on the applications of feature learning. Also, it presents powerful adequate traffic classification results in terms of energy consumption (70% less power CPU utilization around 48% less), and processing time (310% for IPv4 and 595% for IPv6).

Scopus Crossref
View Publication
Publication Date
Thu Dec 01 2022
Journal Name
Iaes International Journal Of Artificial Intelligence
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Tue Mar 26 2024
Journal Name
World Electric Vehicle Journal
Fast Finite-Time Composite Controller for Vehicle Steer-by-Wire Systems with Communication Delays
...Show More Authors

The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Mar 28 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Formulation and Optimization of Oral Fast Dissolving Prochloperazine Maleate Tablets
...Show More Authors

Prochloperazine maleate (PCM) is one of the most prescribed phenothiazine. The purpose of the present research was to develop fast dissolving tablets of PCM with β-cyclodextrin inclusion complex. Tablets prepared  by wet granulation with sublimation and by using  different superdisintegrants type [ low-hydroxypropylcellulose LH21 (L-HPC LH21), carboxymethylcellulose calcium (ECG505), crospovidone (CP)], and different type of subliming agents (urea and ammonium bicarbonate (AB)). Tablets evaluated for its % friability, disintegration time, wetting time, hardness, content uniformity, weight variation, in vitro dissolution studies. For further enhancement of disintegration and dissolution, PCM orodispersible tablet were formula

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Two-Stage Classification of Breast Tumor Biomarkers for Iraqi Women
...Show More Authors

Objective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.

Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 15 2022
Journal Name
Knowledge And Information Systems
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Jan 19 2019
Journal Name
Artificial Intelligence Review
Survey on supervised machine learning techniques for automatic text classification
...Show More Authors

View Publication
Scopus (270)
Crossref (238)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Biomass Conversion And Biorefinery
Lactic acid-based deep eutectic solvents and activated carbon for soap removal from crude biodiesel
...Show More Authors

View Publication
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
THE ROLE OF SATELLITE CHANNELS IN FORMING TRAFFIC AWARENESS AND PREVENTING ACCIDENTS - A FIELD STUDY: THE ROLE OF SATELLITE CHANNELS IN FORMING TRAFFIC AWARENESS AND PREVENTING ACCIDENTS - A FIELD STUDY
...Show More Authors

The importance of the research comes from dealing with the problem of lack of traffic awareness, which causes accidents and the occurrence of human and material losses, and the research aims to study the role of satellite channels in forming traffic awareness among the public, and a sample was chosen from Baghdad consisting of (280) individuals, male and female, and used the questionnaire tool. To obtain the data, which included several questions, the results were analyzed statistically and several results were reached, the most important of which is that there is an interest among the public in following traffic programs at a rate of one to two hours to receive information through traffic programs and to identify and apply gener

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
2nd International Conference On Mathematical Techniques And Applications: Icmta2021
Review of clustering for gene expression data
...Show More Authors

View Publication
Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (17)
Crossref (16)
Scopus Clarivate Crossref