The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals don’t have the serial correlation and ARCH effect, as well as these models, should have a higher value of log-likelihood and SVR-FIGARCH models managed to outperform FIGARCH models with normal and student’s t distributions. The SVR-FIGARCH model exhibited statistical significance and improved accuracy obtained with the SVM technique. Finally, we evaluate the forecasting performance of the various volatility models, and then we choose the best fitting model to forecast the volatility for each series, depending on three forecasting accuracy measures RMSE, MAE, and MAPE.
This study was aime to investigate the effect of addition different concentration of celery leaves to white soft cheese ,Treated cheese between 2018-2019, ,The finely Celery (Apium graveolens) leaves were adding to crude white cheese after texturizing in three leveles included (A,B,C) in addition of control antimicrobial activity of celery treated cheese against total account bacteria and coliform bacteria was estimated during (0, 5, 10, 15, 20) days. The results were shown that the higher concentration of celery in treated cheese, had a lower concentration of protein, lipid and ash content ( 16.81,15.13 and 4.30% respectively, but it had a higher moisture content 59.50%.also the total bacteria counts were decreasing significantly (0.05 P)w
... Show MoreThe current research deals with short term forecasting of demand on Blood material, and its' problem represented by increasing of forecast' errors in The National Center for Blood Transfusion because using inappropriate method of forecasting by Centers' management, represented with Naive Model. The importance of research represented by the great affect for forecasts accuracy on operational performance for health care organizations, and necessity of providing blood material with desired quantity and in suitable time. The literatures deal with subject of short term forecasting of demand with using the time series models in order to getting of accuracy results, because depending these models on data of last demand, that is being sta
... Show MoreIn this paper has been one study of autoregressive generalized conditional heteroscedasticity models existence of the seasonal component, for the purpose applied to the daily financial data at high frequency is characterized by Heteroscedasticity seasonal conditional, it has been depending on Multiplicative seasonal Generalized Autoregressive Conditional Heteroscedastic Models Which is symbolized by the Acronym (SGARCH) , which has proven effective expression of seasonal phenomenon as opposed to the usual GARCH models. The summarizing of the research work studying the daily data for the price of the dinar exchange rate against the dollar, has been used autocorrelation function to detect seasonal first, then was diagnosed wi
... Show MoreThe work reported in this study focusing on the abrasive wear behavior for three types of pipes used in oil industries (Carbone steel, Alloy steel and Stainless steel) using a wear apparatus for dry and wet tests, manufactured according to ASTM G65. Silica sand with
hardness (1000-1100) HV was used as abrasive material. The abrasive wear of these pipes has been measured experimentally by measuring the wear rate for each case under different sliding speeds, applied loads, and sand conditions (dry or wet). All tests have been conducted using sand of particle size (200-425) µm, ambient temperature of 34.5 °C and humidity 22% (Lab conditions).
The results show that the material loss due to abrasive wear increased monotonically with
Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show MoreExogenous levothyroxine dose modulation and euthyroidism achievement is a persistent challenge in clinical settings. This study strives to assess the adequacy of treatment and identify the patients’ factors that can be used to estimate the euthyroid levothyroxine dose. A secondary objective was to assess vitamin D supplementation impact on thyroid status.
A review of a prospectively collected information from 142 female patients from Baghdad Center of Nuclear Medicine from June 2019 until March 2020 who were receiving levothyroxine for different causes was done. After a follow-up period, the patients’ thyroid tests were assessed and the euthyroid doses for each cause category were statistically analyzed. Thyroid function was
... Show MoreIris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the origin
... Show MoreRecords of two regionalized variables were processed for each of porosity and permeability of reservoir rocks in Zubair Formation (Zb-109) south Iraq as an indication of the most important reservoir property which is the homogeneity,considering their important results in criterion most needed for primary and enhanced oil reservoirs.The results of dispersion treatment,the statistical incorporeal indications,boxes plots,rhombus style and tangents angles of intersected circles indicated by confidence interval of porosity and permeability data, have shown that the reservoir rocks of Zubair units (LS),(1L) and (DJ) have reservoir properties of high quality,in contrast to that of Zubair units (MS) and (AB)which have reservoir properties of less q
... Show MoreRealizing the full potential of wireless sensor networks (WSNs) highlights many design issues, particularly the trade-offs concerning multiple conflicting improvements such as maximizing the route overlapping for efficient data aggregation and minimizing the total link cost. While the issues of data aggregation routing protocols and link cost function in a WSNs have been comprehensively considered in the literature, a trade-off improvement between these two has not yet been addressed. In this paper, a comprehensive weight for trade-off between different objectives has been employed, the so-called weighted data aggregation routing strategy (WDARS) which aims to maximize the overlap routes for efficient data aggregation and link cost
... Show More