The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals don’t have the serial correlation and ARCH effect, as well as these models, should have a higher value of log-likelihood and SVR-FIGARCH models managed to outperform FIGARCH models with normal and student’s t distributions. The SVR-FIGARCH model exhibited statistical significance and improved accuracy obtained with the SVM technique. Finally, we evaluate the forecasting performance of the various volatility models, and then we choose the best fitting model to forecast the volatility for each series, depending on three forecasting accuracy measures RMSE, MAE, and MAPE.
The presence of deposition in the river decreases the river flow capability's efficiency due to the absence of maintenance along the river. In This research, a new formula to evaluate the sediment capacity in the upstream part of Al-Gharraf River will be developed. The current study reach lies in Wasit province with a distance equal to 58 km. The selected reach of the river was divided into thirteen stations. At each station, the suspended load and the bedload were collected from the river during a sampling period extended from February 2019 till July 2019. The samples were examined in the laboratory with a different set of sample tests. The formula was developed using data of ten stations, and the other three s
... Show MoreIn this research, a simple experiment in the field of agriculture was studied, in terms of the effect of out-of-control noise as a result of several reasons, including the effect of environmental conditions on the observations of agricultural experiments, through the use of Discrete Wavelet transformation, specifically (The Coiflets transform of wavelength 1 to 2 and the Daubechies transform of wavelength 2 To 3) based on two levels of transform (J-4) and (J-5), and applying the hard threshold rules, soft and non-negative, and comparing the wavelet transformation methods using real data for an experiment with a size of 26 observations. The application was carried out through a program in the language of MATLAB. The researcher concluded that
... Show MoreThe smart city concept has attracted high research attention in recent years within diverse application domains, such as crime suspect identification, border security, transportation, aerospace, and so on. Specific focus has been on increased automation using data driven approaches, while leveraging remote sensing and real-time streaming of heterogenous data from various resources, including unmanned aerial vehicles, surveillance cameras, and low-earth-orbit satellites. One of the core challenges in exploitation of such high temporal data streams, specifically videos, is the trade-off between the quality of video streaming and limited transmission bandwidth. An optimal compromise is needed between video quality and subsequently, rec
... Show MoreThe novel Vierordt’s approach, or simultaneous equation method, was created and validated for the concurrent determination of vincristine sulfate (VCS) and bovine serum albumin (BSA) in pure solutions utilizing UV spectrophotometry. It is simple, precise, economical, rapid, reliable, and accurate. This method depends on measuring absorbance at two wavelengths, 296 nm and 278 nm, which correspond to the λmax of VCS and BSA in deionized water, respectively. The calibration curves of VCS and BSA are linear at concentration ranges of 10–60 μg/mL and 200–1600 μg/mL, with correlation coefficient values (R2) of 1 and 0.999, respectively. The limits of detection (LOD) and quantification (LO
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
The objective of the study: To diagnose the reality of the relationship between the fluctuations in world oil prices and their reflection on the trends of government spending on the various economic sectors.
The research found: that public expenditures contribute to the increase of national consumption through the purchase of consumer goods by the state for the performance of the state's duties or the payment of wages to employees in the public sector and thus have a direct impact on national consumption
The results of the standard tests showed that there is no common integration between the oil price fluctuations and the government expenditure on the security sector through the A
... Show More