Listeria spp. is one of the abortion causative agents in animals, especially in ruminants. This work aimed to detect Listeria spp. in milk and aborted fetus cows in Iraq. A total of 50 organ samples from aborted cow fetuses, including (brain, liver, and spleen), and 50 milk samples from the same aborted cows were collected from Baghdad farms, Iraq from (October 2023- March 2024). The bacteria were identified by conventional culture methods, biochemical tests, and the VITEK2 compact system, followed by molecular confirmation. The antimicrobial resistance pattern assay was performed using the disc diffusion method against eight antibiotic agents, and the L.monocytogenes virulence genes involving prfA,actA, and hylA genes were detected using the PCR. The results revealed that only L. monocytogenes was detected at 2/50(4%) from aborted fetuses isolated from the brain and liver, while not in milk samples. The L.monocytogenes showed 100% resistance against erythromycin, ampicillin, cotrimoxazole, chloramphenicol, vancomycin, and tetracycline. At the same time, all the isolates had a high MDR and MAR (Multiple Antibiotic Resistance) index. This study concluded that L.monocytogenes is one of the abortion causative agents in cattle in Iraq, and the high antibiotic resistance of Listeria leads to economic loss and a possible risk to humans.
Glaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma d
Magnetic Resonance Imaging (MRI) is one of the most important diagnostic tool. There are many methods to segment the
tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment the brain with high precision. In this project, the unsupervised classification methods have been used in order to detect the tumor disease from MRI images. These metho
... Show MoreMaking the data secure is more and more concerned in the communication era. This research is an attempt to make a more secured information message by using both encryption and steganography. The encryption phase is done with dynamic DNA complementary rules while DNA addition rules are done with secret key where both are based on the canny edge detection point of the cover image. The hiding phase is done after dividing the cover image into 8 blocks, the blocks that are used for hiding selected in reverse order exception the edge points. The experiments result shows that the method is reliable with high value in PSNR
Pavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreFor several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
This research aims at making a comparative survey between the dry season in (2017-2018) and the wet season (2018-2019) in Iraq concerning the variation of rainfall and pressure systems responsible for such a difference. In this paper, seven climatological stations have been selected: Mosul, Kirkuk, Khanaqin, Baghdad, Rutba, Diwaniyah and Basra. Results have shown that the first category of rainfall of the two seasons has recorded a higher number of rainy days in comparison with the second and third categories with a total of 274 day in a dry season and 403 day of a wet season. Further, the total amount of the annual continuous rain is higher than the total of thunderstorms in a dry season as well as in the
... Show MoreThis study aimed to detect Anaplasma phagocytophilum in horses through hematological and molecular tests. The 16S rRNA gene of the Anaplasma phagocytophilum parasite was amplified by polymerase chain reaction (PCR), then sequenced, and subjected to phylogenetic analysis to explore "Equine Granulocytic Anaplasmosis" (EGA) infection in three important gathering race horses areas in Baghdad governorate, Iraq. Blood samples were obtained from 160 horses of varying ages, three breeds, and both sexes, between January and December 2021. Prevalence and risk variables for anaplasmosis were analyzed using statistical odds ratio and chi-square tests. Results demonstrated that clinical anaplasmosis symptoms comprised jaundice, wei
... Show More