This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estimation through working with rough set theory. The results obtained from most code sets show that Bees algorithm better than ID3 in decreasing the number of extracted rules without affecting the accuracy and increasing the accuracy ratio of null values estimation, especially when the number of null values is increasing
The aim of this research is to know the effect of two strategies of active learning, the five fingers and traffic signals, on the first grade intermediate level student's achievement and personal intelligence. The research sample was chosen from the Al- Mansour intermediate school for boys, including (101) students divided into three groups chosen randomly which represented the first experimental group (32) students, the second experimental group (34) students, and the control group (33) students. To achieve the research aims, the research prepared a physics achievement test containing (26) items, and a personal intelligence test containing (20) items. The psychometric characteristics, of the tests were checked up the following results were
... Show MoreTransference numbers of the aqueous zinc chloride and zinc sulphate solutions have been measured for the concentrations 0.03, 0.05, 0.07, 0.09 and 0.1 mol.dm-3at 298.15K, by using the modified Hittorf method. The dependence of transference number on concentration of each electrolyte was also investigated in an attempt to explain the value of the limiting transference number. The Longsworth method has been used for the extrapolation of zinc transference number in aqueous solutions, using the values of the limiting transference numbers of the appropriate values of the limiting equivalent conductance, it was possible to determine the corresponding values of the limiting ion conductance for the cations and anions of the electrolytes. The
... Show MoreThis paper devoted to the analysis of regular singular boundary value problems for ordinary differential equations with a singularity of the different kind , we propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the regular singular points and its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
In this study, we conducted a series of polymerization studies of hexyl methacrylate in dimethyl sulfoxide with (0.1 - 0.4) mol dm-3 of monomer and (1 10-3 – 4 10-3) mol dm-3 of benzoyl peroxide as initiators at 70 °C. Using the well-known conversion vs. time technique, the effects of initiator and monomer concentration on the rate of polymerization (Rp) were studied. An initiator of order 0.35 was obtained in accordance with theory and a divergence from normal kinetics was detected with an order of 1.53 with respect to monomer concentration. The activation energy was determined to be (72.90) kJ mol-1, which does not correspond to the value of most thermally initiated m
... Show MoreGiven the importance of increasing economic openness transport companies’ face various issues arising at present time, this required importing different types of goods with different means of transport. Therefore, these companies pay great attention to reducing total costs of transporting commodities by using numbers means of transport methods from their sources to the destinations. The majority of private companies do not acquire the knowledge of using operations research methods, especially transport models, through which the total costs can be reduced, resulting in the importance and need to solve such a problem. This research presents a proposed method for the sum of Total Costs (Tc) of rows and columns, in order to arrive at the init
... Show MoreIn this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
In this paper, Min-Max composition fuzzy relation equation are studied. This study is a generalization of the works of Ohsato and Sekigushi. The conditions for the existence of solutions are studied, then the resolution of equations is discussed.
This research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical
... Show MoreThe method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.
This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural
... Show More