This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estimation through working with rough set theory. The results obtained from most code sets show that Bees algorithm better than ID3 in decreasing the number of extracted rules without affecting the accuracy and increasing the accuracy ratio of null values estimation, especially when the number of null values is increasing
In this paper, the using of Non-Homogenous Poisson Processes, with one of the scientific and practical means in the Operations Research had been carried out, which is the Queuing Theory, as those operations are affected by time in their conduct by one function which has a cyclic behavior, called the (Sinusoidal Function). (Mt / M / S) The model was chosen, and it is Single Queue Length with multiple service Channels, and using the estimating scales (QLs, HOL, HOLr) was carried out in considering the delay occurring to the customer before his entrance to the service, with the comparison of the best of them in the cases of the overload.
Through the experiments
... Show MoreIn front of the serious deterioration of the elements of the environment, new convictions arose the need to integrate into the global environmental concerns as being one and the issue of shared responsibility and the impact of this conviction, the evolution of the environment protection law in many countries, including Algeria. Due to the multiplicity of perceptions about the environmental result of multiple scientific disciplines, the legislative concept emerged to protect the environment, which includes prevention and rational management and conservation and restoration and repair.
Environmental planning for the various governments and countries aims to avert disasters and achieve the
... Show MoreMultiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain
... Show MoreThis study has been accomplished by testing three different models to determine rocks type, pore throat radius, and flow units for Mishrif Formation in West Qurna oilfield in Southern Iraq based on Mishrif full diameter cores from 20 wells. The three models that were used in this study were Lucia rocks type classification, Winland plot was utilized to determine the pore throat radius depending on the mercury injection test (r35), and (FZI) concepts to identify flow units which enabled us to recognize the differences between Mishrif units in these three categories. The study of pore characteristics is very significant in reservoir evaluation. It controls the storage mechanism and reservoir fluid prope
The objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show MorePersonal intelligence is thinking about an other person , understanding him, have sympathy and differentiation between people, and to appreciate their own point of view, with the sensitivity to their motives, behavior, and goals, so this intelligence involves dealing with a person or group of persons effectively and in normal or logical manner.
Emotions management is to achieve emotional balance by controlling the emotions continuously, self disciplining, keeping away from excitement sources, and dealing with bad situations in constructive way to achieve the psychological stability .
- the study aims
Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreBackground: The rapid evolution of Artificial Intelligence (AI) has significantly influenced Education, demonstrating substantial potential to transform traditional teaching and learning methods. AI reshapes teacher-student interactions and the relationship with knowledge. Objective: To analyze the potential benefits, ethical challenges, and limitations of AI in Education based on recent scientific literature, emphasizing the balance between technology and human interaction. Methods: A documentary research approach with a descriptive focus was employed, following the PRISMA protocol for systematic reviews. The search strategy involved analyzing evidence from 18 scientific articles published within the last six years. Results:AI o
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.