This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estimation through working with rough set theory. The results obtained from most code sets show that Bees algorithm better than ID3 in decreasing the number of extracted rules without affecting the accuracy and increasing the accuracy ratio of null values estimation, especially when the number of null values is increasing
After Zadeh introduced the concept of z-number scientists in various fields have shown keen interest in applying this concept in various applications. In applications of z-numbers, to compare two z-numbers, a ranking procedure is essential. While a few ranking functions have been already proposed in the literature there is a need to evolve some more good ranking functions. In this paper, a novel ranking function for z-numbers is proposed- "the Momentum Ranking Function"(MRF). Also, game theoretic problems where the payoff matrix elements are z-numbers are considered and the application of the momentum ranking function in such problems is demonstrated.
Every body has a size and mass that distinguishes it from others and makes it different from others. Some of these bodies are huge and large in size, and some are small and light in weight. Among these masses and bodies are some that are dealt with by their size and weight, each according to its quantity, weight, and cheapness. This is why they created quantities by which these weights and quantities could be estimated, so they used measures and weights for that. Objectives: The research aims to know some measures and weights, such as the wife’s maintenance, the amount of zakat, etc.I found it to be a widely spread topic, and widely used in the folds of jurisprudence. During my reading of jurisprudence books, I found jurists using many qu
... Show MoreNew trends in teaching and learning theory are considered a theoretical axis
from which came the background that depends on any source, or practice sample or
teaching plane, accuracy and simplicity prevent the development of the teaching
process. Many attempts have come to scene to illuminate the teaching background,
but they have not exceed those remarkable patterns and methods. Thus, the
appearance of the teaching theory have been hindered.
This led to the need for research and development in the field of teaching to
find out a specific teaching theory according to the modern trends and concepts.
Teaching is regarded a humanitarian process which aims at helping those who
want to acquire knowledge, since teach
The Umayyad era is characterized by the diversity of the subjects and their multiplicity in the literary phenomena. These phenomena are singing phenomena, although they were known in previous eras, they took a distinctive form in the era.
In this light, the researcher tried to prove that singing theory in the Umayyad period was characterized by development and renewal. The research was entitled (evolution and renewal in the theory of singing in the Umayyad era).
PDBNRSIA Asst, International Journal of Research in Social Sciences and Humanities, 2018
Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreIf the Industrial Revolution has enabled the replacement of humans with machines, the digital revolution is moving towards replacing our brains with artificial intelligence, so it is necessary to consider how this radical transformation affects the graphic design ecosystem. Hence, the research problem emerged (what are the effects of artificial intelligence on graphic design) and the research aimed to know the capabilities and effects of artificial intelligence applications in graphic design, and the study dealt in its theoretical framework with two main axes, the first is the concept of artificial intelligence, and the second is artificial intelligence applications in graphic design. The descriptive approach adopted a method of content
... Show MoreAbstract
The grey system model GM(1,1) is the model of the prediction of the time series and the basis of the grey theory. This research presents the methods for estimating parameters of the grey model GM(1,1) is the accumulative method (ACC), the exponential method (EXP), modified exponential method (Mod EXP) and the Particle Swarm Optimization method (PSO). These methods were compared based on the Mean square error (MSE) and the Mean Absolute percentage error (MAPE) as a basis comparator and the simulation method was adopted for the best of the four methods, The best method was obtained and then applied to real data. This data represents the consumption rate of two types of oils a he
... Show More