Let G be a finite group, the result is the involution graph of G, which is an undirected simple graph denoted by the group G as the vertex set and x, y ∈ G adjacent if xy and (xy)2 = 1. In this article, we investigate certain properties of G, the Leech lattice groups HS and McL. The study involves calculating the diameter, the radius, and the girth of ΓGRI.
For any group G, we define G/H (read” G mod H”) to be the set of left cosets of H in G and this set forms a group under the operation (a)(bH) = abH. The character table of rational representations study to gain the K( SL(2,81)) and K( SL(2, 729)) in this work.
The group for the multiplication of closets is the set G|N of all closets of N in G, if G is a group and N is a normal subgroup of G. The term “G by N factor group” describes this set. In the quotient group G|N, N is the identity element. In this paper, we procure K(SL(2,125)) and K(SL(2,3125)) from the character table of rational representations for each group.
In a connected graph , the distance function between each pair of two vertices from a set vertex is the shortest distance between them and the vertex degree denoted by is the number of edges which are incident to the vertex The Schultz and modified Schultz polynomials of are have defined as:
respectively, where the summations are taken over all unordered pairs of distinct vertices in and is the distance between and in The general forms of Schultz and modified Schultz polynomials shall be found and indices of the edge – identification chain and ring – square graphs in the present work.
Let/. It :0 ---0 G be any two self maps of a compact connected oriented Lie group G. In this paper, for each positive integer k , we associate an integer with fk,hi . We relate this number with Lefschetz coincidence number. We deduce that for any two differentiable maps f, there exists a positive integer k such that k 5.2+1 , and there is a point x C G such that ft (x) = (x) , where A is the rank of G . Introduction Let G be an n-dimensional com -pact connected Lie group with multip-lication p ( .e 44:0 xG--+G such that p ( x , y) = x.y ) and unit e . Let [G, G] be the set of homotopy classes of maps G G . Given two maps f , f G ---• Jollowing [3], we write f. f 'to denote the map G-.Gdefined by 01.11® =A/WO= fiat® ,sea Given a point g
... Show More 
        