Sub-threshold operation has received a lot of attention in limited performance applications.However, energy optimization of sub-threshold circuits should be performed with the concern of the performance limitation of such circuit. In this paper, a dual size design is proposed for energy minimization of sub-threshold CMOS circuits. The optimal downsizing factor is determined and assigned for some gates on the off-critical paths to minimize the energy at the maximum allowable performance. This assignment is performed using the proposed slack based genetic algorithm which is a heuristic-mixed evolutionary algorithm. Some gates are heuristically assigned to the original and the downsized design based on their slack time determined by static timing analysis. Other gates are subjected to the genetic algorithm to perform an optimal downsizing assignment taking into account the previous assignments. The algorithm is applied for different downsizing factors to determine the optimal dual size for low energy operation without a performance degradation. Experimental results are obtained for some ISCAS-85 benchmark circuits such as 74283, 74L85, ALU74181, and 16 bit ripple carry adder. The proposed design shows an energy per cycle saving ranged from (29.6% to 56.59%) depending on the utilization of available slack time from the off-critical paths. © School of Engineering, Taylor’s University.
This paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show MoreIn Libya, there are multiple sources of pollution, one of which is animal waste. The anaerobic digestion (AD) of organic wastes to produce biogas has the advantage of producing valuable, renewable energy while reducing the environmental impact of these wastes. Cowmanure have the potential to produce biogas due to their high organic content. This study aimed to study different concentrations for the feedstock (1:1 and 2:1 cow manure: water v/v) to monitor which one gives higher biogas production. A plastic tank with a capacity of 72 liters and a feedstock volume of 60 liters was used to create a pilot scale. The biogas was analyzed using a GC device at the end of the experiment in the Zawiya Oil Refining Company. The result indicated that th
... Show MoreThe performance analyses of 15 kWp (kW peak) Grid -Tied solar PV system (that considered first of its type) implemented at the Training and Energy Research Center Subsidiary of Iraqi Ministry of Electricity in Baghdad city has been achieved. The system consists of 72 modules arranged in 6 strings were each string contains 12 modules connected in series to increase the voltage output while these strings connected in parallel to increase the current output. According to the observed duration, the reference daily yields, array daily yields and final daily yields of this system were (5.9, 4.56, 4.4) kWh/kWp/day respectively. The energy yield was 1585 kWh/kWp/year while the annual total solar irradiation received by solar array system was 198
... Show MoreThe evolution in materials’ technology in the last decades resulted in interesting projects that aimed at preserving the environment and energy and reduce pollution. They have been taken the principles of environmental design as a basis for architectural thought, starting from the early stages of the design process ending in choosing appropriate building materials to achieve sustainable buildings, but these trying are limited in our local environment and there isn’t demanded seriousness. The research problem emerges in the ignorance of the environmental aspect (ecological system) when selecting building materials during design process to achieve sustainable buildings. The aim of this research is revealing the mechanisms of selecting
... Show MoreIn the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
CdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
The present studies are focused on the modification of the properties of epoxy resin with different additives namely aluminum, copper by preparing of composites systems with percentage (20%, 40% and 50%) of the above additives. The experimental results show that the D.C of conductivity on wt% filler content at ( 293-413 ) K electrical conductivity of all above composites increased with temperature for composites with filler contact and find the excellent electrical conductivity of copper and lie between (2.6*10-10 - 2.1*10-10)?.cm . The activation energy of the electrical conductivity is determined and found to decrease with increasing the filler concentration.
Background: Radiotherapy, is therapy using ionizing radiation in order to deliver an optimal dose of either particulate or electromagnetic radiation to a particular area of the body with minimal damage to normal tissues. The source of radiation may be outside the body of the patient (external beam irradiation) or it may be an isotope that has been implanted or instilled into abnormal tissue or a body cavity. Called also radiotherapy. The aim of work studies the relationship between the depth dose and the high photon xray energies (6MeV and 10MeV). Patients and methods: in our work, we studied the dose distribution in water phantom given at different depths (zero-18) cm deep at1cm intervals treated with different field size (5×5-,10×1
... Show MoreIn this work, an inventive photovoltaic evaporative cooling (PV/EC) hybrid system was constructed and experimentally investigated. The PV/EC hybrid system has the prosperous advantage of producing electrical energy and cooling the PV panel besides providing cooled-humid air. Two cooling techniques were utilized: backside evaporative cooling (case #1) and combined backside evaporative cooling with a front-side water spray technique (case #2). The water spraying on the front side of the PV panel is intermittent to minimize water and power consumption depending on the PV panel temperature. In addition, two pad thicknesses of 5 cm and 10 cm were investigated at three different water flow rates of 1, 2, and 3 lpm. In Case #1,
... Show MoreContinuous functions are novel concepts in topology. Many topologists contributed to the theory of continuous functions in topology. The present authors continued the study on continuous functions by utilizing the concept of gpα-closed sets in topology and introduced the concepts of weakly, subweakly and almost continuous functions. Further, the properties of these functions are established.