This paper proposes a new structure for a Fractional Order Sliding Mode Controller (FOSMC) to control a Twin Rotor Aerodynamic System (TRAS). The new structure is composed by defining two 3-dimensional sliding mode surfaces for the TRAS model and introducing fractional order derivative integral in the state variables as well as in the control action. The parameters of the controller are determined so as to minimize the Integral of Time multiplied by Absolute Error (ITAE) performance index. Through comparison, this controller outperforms its integer counterpart in many specifications, such as reducing the delay time, rise time, percentage overshoot, settling time, time to reach the sliding surface, and amplitude of chattering in control input.
The blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six differen
... Show MoreThis paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreThe Hartley transform generalizes to the fractional Hartley transform (FRHT) which gives various uses in different fields of image encryption. Unfortunately, the available literature of fractional Hartley transform is unable to provide its inversion theorem. So accordingly original function cannot retrieve directly, which restrict its applications. The intension of this paper is to propose inversion theorem of fractional Hartley transform to overcome this drawback. Moreover, some properties of fractional Hartley transform are discussed in this paper.
In this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15
... Show MoreThe techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of
... Show MoreThe analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
The application of low order panel method with the Dirichlet boundary condition on complex aircraft configuration have been studied in high subsonic and transonic speeds. Low order panel method has been used to solve the case of the steady, inviscid and compressible flow on a forward swept wing – canard configuration with cylindrical fuselage and a vertical stabilizer with symmetrical cross section. The aerodynamic coefficients for the forward swept wing aircraft were calculated using measured wake shape from an experimental work on same model configuration. The study showed that the application of low order panel method can be used with acceptable results