This paper proposes a new structure for a Fractional Order Sliding Mode Controller (FOSMC) to control a Twin Rotor Aerodynamic System (TRAS). The new structure is composed by defining two 3-dimensional sliding mode surfaces for the TRAS model and introducing fractional order derivative integral in the state variables as well as in the control action. The parameters of the controller are determined so as to minimize the Integral of Time multiplied by Absolute Error (ITAE) performance index. Through comparison, this controller outperforms its integer counterpart in many specifications, such as reducing the delay time, rise time, percentage overshoot, settling time, time to reach the sliding surface, and amplitude of chattering in control input.
The topic of context is one of the important topics, which was mentioned as a concept in several fields and different fields, and there were many points of view that defined that concept.
He specified the title of the research (design contexts in the design of the interior space), as the research sought to identify the concept of context in the interior design of the spaces of sewing workshops. The research was divided into four chapters:
The first chapter, which consists of the methodological framework, the problem of research and the need for it, the importance of research, the goal and limits of research for sewing workshops for vocational schools from (2020-2021).
The second chapter: consists of previous studies and the theo
Within this paper, we developed a new series of organic chromophores based on triphenyleamine (TPA) (AL1, AL-2, AL-11 and AL-22) by engineering the structure of the electron donor (D) unit via replacing a phenyle ring or inserting thiophene as a π-linkage. For the sake of scrutinizing the impact of the TPA donating ability and the spacer upon the photovoltaic, absorptional, energetic, and geometrical characteristic of these sensitizers, density functional theory (DFT) and time-dependent DFT (TD-DFT) have been utilized. According to structural characteristics, incorporating the acceptor, π-bridge and TPA does not result in a perfect coplanar conformation in AL-22. We computed EHOMO, ELUMO and bandgap (Eg) energies by performing frequency a
... Show MoreThe application of low order panel method with the Dirichlet boundary condition on complex aircraft configuration have been studied in high subsonic and transonic speeds. Low order panel method has been used to solve the case of the steady, inviscid and compressible flow on a forward swept wing – canard configuration with cylindrical fuselage and a vertical stabilizer with symmetrical cross section. The aerodynamic coefficients for the forward swept wing aircraft were calculated using measured wake shape from an experimental work on same model configuration. The study showed that the application of low order panel method can be used with acceptable results
The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreWith the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil’s mutual displacement and coupling coef
... Show MoreSewer network is one of the important utilities in modern cities which discharge the sewage from all facilities. The increase of population numbers consequently leads to the increase in water consumption; hence waste water generation. Sewer networks work is very expensive and need to be designed accurately. Thus construction effective sewer network system with minimum cost is very necessary to handle waste water generation.
In this study trunk mains networks design was applied which connect the pump stations together by underground pipes for too long distances. They usually have large diameters with varying depths which consequently need excavations and gathering from pump stations and transport the sewage
... Show More