Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutants and environmental conditions remains uncharted. Future research must expand EME's applicability, assess its environmental impact versus other methods, and boost scalability, cost-effectiveness, and energy efficiency in industry. Advances in novel liquid membrane materials can enhance extraction efficiency and selectivity, aiming to provide efficient, sustainable industrial pollutant treatment. This research provides a review of the existing practices in the field of liquid membranes when coupled with the application of an electric field.
Discotic liquid crystal compounds were synthesized and characterized. Liquid crystalline texture of these compounds was investigated by polarized optical microscopy (POM). The Hartree-Fock approximation (HF) was used to calculate theoretical molecular parameters for synthesized compounds such as optimization, hardness, EHOMO, ELUMO, and energy gap using the Gaussian 09W program.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreThe study aims to identify the concept of empowering women from the point of view of experts in the Palestinian society, specifically in Gaza, as well as to explore the foundations of their formation of this concept. Additionally, the study seeks to clarify the most important challenges facing the empowerment of women in Palestinian society. The study used the design of a grounded theory that seeks to build the theory through deep analysis of the data, as qualitative data were collected through holding two focus groups and six in-depth interviews with the study sample, who were selected by the method of targeted sampling. The sample included (16) individuals (9 female experts, 7 male experts) holding academic and community leadership pos
... Show MoreOrganohalosilanes conslitute an important subject ١٦؛ the chemistry oforganosilicon compound؛. Being starting materials and intermediates in the synthesis of a large number of various compounds so it is very important to get such materials in its highest purity ,but the separation of rathylchlorosilanes was still a big^oblem, duet^the great similarity in their physical and chemical properties, making its analysing verydifficult, ^or this reason tteir must be a good method o^e^r^iondealing^ththe^compounds, gas- liquid chromatography proved that it was the best, specially when (m- nitrotoluene) was used as a stationary liquid phase, it gave a complete separation and a good statistical results
Membrane manufacturing system was operated using dry/wet phase inversion process. A sample of hollow fiber membrane was prepared using (17% wt PVC) polyvinyl chloride as membrane material and N, N Dimethylacetamide (DMAC) as solvent in the first run and the second run was made using (DMAC/Acetone) of ratio 3.4 w/w. Scanning electron microscope (SEM) was used to predict the structure and dimensions of hollow fiber membranes prepared. The ultrafiltration experiments were performed using soluble polymeric solute poly ethylene glycol (PEG) of molecular weight (20000 Dalton) 800 ppm solution 25 °C temperature and 1 bar pressure. The experimental results show that pure water permeation increased from 25.7 to 32.2 (L/m2.h.bar) by adding aceton
... Show More