The instant global trend towards developing tight reservoir is great; however, development can be very challenging due to stress and geomechanical properties effect in horizontal well placement and hydraulic fracturing design. Many parameters are known to be important to determine the suitable layer for locating horizontal well such as petrophysical and geomechanical properties. In the present study, permeability sensitivity to stress is also considered in the best layer selection for well placement. The permeability sensitivity to the stress of the layers was investigated using measurements of 27 core sample at different confining stress values. 1-D mechanical earth model (MEM) was built and converted to a 3-D full-field geomechanical model to reach perfect layer choice. The analysis of results has diagnosed the maximum horizontal stress direction of NE-SW as determined using both Fullbore Formation Micro Imager FMI and sonic scanner anisotropy analysis. The effect of porosity and permeability compaction as a result of stress changes while reservoir depletion is including on the reservoir simulation model. The choice of best layer and optimum design criteria for hydraulic fracturing is done in the current study using a compaction simulation model with the results of available measurements of geomechanical properties. The results of the simulation model show that the formation sensitivity to stress is an important factor for detecting a suitable layer for horizontal wells placement. The results of MEM indicate that horizontal stress difference (Δσ) and unconfined compressive strength (UCS) are the most important factors among geomechanical parameters affected the layer selection. From simulation results, it was found that 225 to 275 m fracture half-length gives a higher increment in oil production. The optimum number of fracture stages is noticed to be 8 to 10 stages after which the increment in production will reduce.
One of the costliest problems facing the production of hydrocarbons in unconsolidated sandstone reservoirs is the production of sand once hydrocarbon production starts. The sanding start prediction model is very important to decide on sand control in the future, including whether or when sand control should be used. This research developed an easy-to-use Computer program to determine the beginning of sanding sites in the driven area. The model is based on estimating the critical pressure drop that occurs when sand is onset to produced. The outcomes have been drawn as a function of the free sand production with the critical flow rates for reservoir pressure decline. The results show that the pressure drawdown required to
... Show MoreThe blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six differen
... Show MoreIn this work, the effects of size, and temperature on the linear and nonlinear optical properties in InGaN/GaN inverse parabolic and triangular quantum wells (IPQW and ITQW) for different concentrations at the well center were theoretically investigated. The indium concentrations at the barriers were fixed to be always xmax = 0.2. The energy levels and their associated wave functions are computed within the effective mass approximation. The expressions of optical properties are obtained analytically by using the compact density-matrix approach. The linear, nonlinear, and total absorption coefficients depending on the In concentrations at the well center are investigated as a function of the incident photon energy for different
... Show MoreIn high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show MoreThe process of selection assure the objective of receiving for chosen ones to high levels more than other ways , and the problem of this research came by these inquires (what is the variables of limits we must considered when first preliminaries selections for mini basket ? and what is the proper test that suits this category ? and is there any standards references it can be depend on it ?) also the aims of this research that knowing the limits variables to basketball mini and their tests as a indicators for preliminaries for mini basketball category in ages (9-12) years and specifies standards (modified standards degrees in following method) to tests results to some limits variables for research sample. Also the researchers depends on (16)
... Show MoreOne of the most important environmental issues is the responsible effective and economic treatment of drilling waste especially oily waste.
In this research two fungal isolates named Pleurotus ostreatus and Trichoderma harzianum were chosen for the first time to treat biologically the oily drilled cuttings contaminated with diesel which resulted from drilling oil wells use oil based muds (OBMs).
The results showed that the fungi under study utilized the hydrocarbon of contaminated soil as a source of nutrient and growth and that both fungi can be considered hydrocarbon degrading microorganisms. The used biotreatment is cost effective process since most of the materials used in the cultivation and growth of the present fungi were av