In this paper, we will study a concepts of sectional intuitionistic fuzzy continuous and prove the schauder fixed point theorem in intuitionistic fuzzy metric space as a generalization of fuzzy metric space and prove a nother version of schauder fixed point theorem in intuitionistic fuzzy metric space as a generalization to the other types of fixed point theorems in intuitionistic fuzzy metric space considered by other researchers, as well as, to the usual intuitionistic fuzzy metric space.
The main objective of this work is to introduce and investigate fixed point (F. p) theorems for maps that satisfy contractive conditions in weak partial metric spaces (W.P.M.S), and give some new generalization of the fixed point theorems of Mathews and Heckmann. Our results extend, and unify a multitude of (F. p) theorems and generalize some results in (W.P.M.S). An example is given as an illustration of our results.
This paper aims to prove an existence theorem for Voltera-type equation in a generalized G- metric space, called the -metric space, where the fixed-point theorem in - metric space is discussed and its application. First, a new contraction of Hardy-Rogess type is presented and also then fixed point theorem is established for these contractions in the setup of -metric spaces. As application, an existence result for Voltera integral equation is obtained.
In this paper, we proved coincidence points theorems for two pairs mappings which are defined on nonempty subset in metric spaces by using condition (1.1). As application, we established a unique common fixed points theorems for these mappings by using the concept weakly compatible (R-weakly commuting) between these mappings.
In this paper, we introduced some fact in 2-Banach space. Also, we define asymptotically non-expansive mappings in the setting of 2-normed spaces analogous to asymptotically non-expansive mappings in usual normed spaces. And then prove the existence of fixed points for this type of mappings in 2-Banach spaces.
The focus of this article, reviewed a generalized of contraction mapping and nonexpansive maps and recall some theorems about the existence and uniqueness of common fixed point and coincidence fixed-point for such maps under some conditions. Moreover, some schemes of different types as one-step schemes ,two-step schemes and three step schemes (Mann scheme algorithm, Ishukawa scheme algorithm, noor scheme algorithm, .scheme algorithm, scheme algorithm Modified scheme algorithm arahan scheme algorithm and others. The convergence of these schemes has been studied .On the other hands, We also reviewed the convergence, valence and stability theories of different types of near-plots in convex metric space.
The main purpose of this paper is to introduce and prove some fixed point theorems for two maps that
satisfy -contractive conditions with rational expression in partially ordered metric spaces, our results improve and unify a multitude of fixed point theorems and generalize some recent results in ordered partially metric space.
In this paper, we will show that the Modified SP iteration can be used to approximate fixed point of contraction mappings under certain condition. Also, we show that this iteration method is faster than Mann, Ishikawa, Noor, SP, CR, Karahan iteration methods. Furthermore, by using the same condition, we shown that the Picard S- iteration method converges faster than Modified SP iteration and hence also faster than all Mann, Ishikawa, Noor, SP, CR, Karahan iteration methods. Finally, a data dependence result is proven for fixed point of contraction mappings with the help of the Modified SP iteration process.
The aim of this paper is to prove some results for equivalence of moduli of smoothnes in approximation theory , we used a"non uniform" modulus of smoothness and the weighted Ditzian –Totik moduli of smoothness in by spline functions ,several results are obtained .For example , it shown that ,for any the inequality , is satisfied ,finally, similar result for chebyshev partition and weighted Ditzian –Totik moduli of smoothness are also obtained.
The objective of this work is to study the concept of a fuzzy -cone metric space And some related definitions in space. Also, we discuss some new results of fixed point theorems. Finally, we apply the theory of fixed point achieved in the research on an integral type.