Preferred Language
Articles
/
nxZL64oBVTCNdQwCAKhV
Accurate Petrophysical Interpretation of Carbonate using the Elemental Capture Spectroscopy (ECS)
...Show More Authors

Elemental capture spectroscopy (ECS) is an important tool in the petroleum industry for determining the composition and properties of rock formations in a reservoir. Knowledge of the types and abundance of different minerals in the reservoir is crucial for accurate petrophysical interpretation, reservoir engineering practices, and stratigraphic correlation. ECS measures the elemental content of the rock, which directly impacts several physical properties that are essential for reservoir characterization, such as porosity, fluid saturation, permeability, and matrix density. The ability to accurately determine these properties leads to better reservoir mapping, improved production, and more effective resource management. Accurately determining the mineralogy and porosity of carbonate rocks and other materials is the aim of this paper. Calcite, dolomite, quartz, clay (illite), anhydrite, and pyrite, in addition to water as a fluid, are taken into account in the computation. The formation's lithology and porosity can be ascertained from this data. When compared to the core descriptions in the geological report, the results demonstrated a distinct zone of unique lithology with good prediction accuracy.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Rigid Trunk Sewer Deterioration Prediction Models using Multiple Discriminant and Neural Network Models in Baghdad City, Iraq
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Jul 01 2013
Journal Name
Diyala Journal For Pure Sciences
Multipole Mixing Ratios for Gamma transitions in 56Fe populated in Reaction by using least square fitting method .
...Show More Authors

The γ- mixing ratios of γ- transitions from levels of 56Fe populated in reaction are calculated using least square fitting program for the first time in the case of pure and mixed transitions the results obtained have been compound with γ Values determined by other methods .The comparison shows that the agreement is good this confirmed the valilety of this method in calculating of values for such γ- transitions key word: γ- transition ,Multipole mixing ratios ,Least square fitting method.

Publication Date
Tue Aug 01 2017
Journal Name
Journal Of Engineering
Rigid trunk sewer deterioration prediction models using multiple discriminant and neural network models in Baghdad city, Iraq
...Show More Authors

The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the

... Show More
Publication Date
Fri Aug 22 2025
Journal Name
Journal Of Physical Education
Unbalanced Strength Exercises Using Designed Tools and Their Effects on Some Biomechanical Variables in Young 110m Hurdles
...Show More Authors

View Publication
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
A Modified Approach by Using Prediction to Build a Best Threshold in ARX Model with Practical Application
...Show More Authors

The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.

In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Sep 28 2017
Journal Name
Medycyna Pracy
MTS-6 detectors calibration by using <sup>239</sup>Pu-Be neutron source
...Show More Authors

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Jul 11 2022
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Dynamic Background Subtraction in Video Surveillance Using Color-Histogram and Fuzzy C-Means Algorithm with Cosine Similarity
...Show More Authors

The background subtraction is a leading technique adopted for detecting the moving objects in video surveillance systems. Various background subtraction models have been applied to tackle different challenges in many surveillance environments. In this paper, we propose a model of pixel-based color-histogram and Fuzzy C-means (FCM) to obtain the background model using cosine similarity (CS) to measure the closeness between the current pixel and the background model and eventually determine the background and foreground pixel according to a tuned threshold. The performance of this model is benchmarked on CDnet2014 dynamic scenes dataset using statistical metrics. The results show a better performance against the state-of the art

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon May 01 2017
Journal Name
Nano Hybrids And Composites
White Light Generation from Electroluminescence Devices Using TPD:PMMA/QDs/Alq<sub>3</sub>
...Show More Authors

Quantum dots of CdSe, CdS and ZnS QDs were prepared by chemical reaction and used to fabricate organic quantum dot hybrid junction device. QD-LEDs were fabricated using layers of ITO/TPD: PMMA/CdSe/Alq3, ITO/TPD: PMMA/CdS/Alq3 and ITO/TPD: PMMA/ZnS/Alq3 devices which prepared by phase segregation method. The hybrid white light emitting devices consists, of three-layers deposited successively on the ITO glass substrate; the first layer was of N, N’-bis (3-methylphenyl)-N, N’-bis (phenyl) benzidine (TPD) polymer mixed with polymethyl methacrylate (PMMA) polymers. The second layer was QDs while the third layer was tris (8-hydroxyquinoline) aluminium (Alq3

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Tue Aug 03 2021
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Enhancing Assurance Services Using Non-Renewable Resources Standard (NR0401) “Constructive Materials: Applied Research for Kufa Cement Factory
...Show More Authors

The importance of this study stems from the importance of preserving the environment and creating a clean sustainable environment from waste and emissions and all the operations of industrial companies in general and cement companies in particular by activating sustainability accounting standards. The research aims to identify and diagnose deviations in violation of sustainability standards by employing the non-renewable resources standard (NR0401) For the construction industries to create a sustainable audit environment, the deductive approach was followed in the theoretical side and the inductive and descriptive approach to the practical side. The most important results of the research were the possibility of applying sustainab

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
A Modified Support Vector Machine Classifiers Using Stochastic Gradient Descent with Application to Leukemia Cancer Type Dataset
...Show More Authors

Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref