Preferred Language
Articles
/
nhZqCocBVTCNdQwCjTH2
Prediction of Concrete Cover Separation in Reinforced Concrete Beams Strengthened with FRP
...Show More Authors

Scopus Clarivate Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India
...Show More Authors

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Apr 03 2016
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Ultrasound findings in prediction of breast cancer histological grade and HER2 status
...Show More Authors

Background: Breast cancer is the most frequent cancerous tumor and major cause of death from cancer between women all over the world.
Objectives: is to assess if ultrasound features of breast cancer can predict its histopathological grade and HER2 status of breast cancer for patients had their diagnosis in Oncology Teaching Hospital in Medical city complex from September 2014 to November 2015
Patients and Methods: This is retrospective study of 102 patients whom histopathologically proved breast cancer had reviewed their ultrasound findings and correlate them with histopathological grade and HER2 status.
Results: well circumscribed lesions, poorly defined and spiculated lesions are more likely to be of intermediate to high grade

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 25 2022
Journal Name
Lubricants
Development of Hybrid Intelligent Models for Prediction Machining Performance Measure in End Milling of Ti6Al4V Alloy with PVD Coated Tool under Dry Cutting Conditions
...Show More Authors

Ti6Al4V alloy is widely used in aerospace and medical applications. It is classified as a difficult to machine material due to its low thermal conductivity and high chemical reactivity. In this study, hybrid intelligent models have been developed to predict surface roughness when end milling Ti6Al4V alloy with a Physical Vapor Deposition PVD coated tool under dry cutting conditions. Back propagation neural network (BPNN) has been hybridized with two heuristic optimization techniques, namely: gravitational search algorithm (GSA) and genetic algorithm (GA). Taguchi method was used with an L27 orthogonal array to generate 27 experiment runs. Design expert software was used to do analysis of variances (ANOVA). The experimental data were

... Show More
View Publication
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Sep 24 2021
Journal Name
Indonesian Journal Of Chemistry
Molecular Imprinted of Nylon 6 for Selective Separation of Procaine by Solid-Phase Extraction
...Show More Authors

The study is based on the selective binding ability of the drug compound procaine (PRO) on a surface imprinted with nylon 6 (N6) polymer. Physical characterization of the polymer template was performed by X-ray diffraction and DSC thermal analysis. The imprinted polymer showed a high adsorption capacity to trap procaine (237 µg/g) and excellent recognition ability with an imprinted factor equal to 3.2. The method was applied to an extraction column simulating a solid-phase extraction to separate the drug compound in the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate more than the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate of more t

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Method of Oil/Water Separation Using Composite of Polymethylacrylamide Hydrogel-Coated Metal Mesh
...Show More Authors

Different compositions of hydrogels composed of mathacrylamide homopolymer (60 and 90% of PMAM) were prepared using the free radical polymerization technique, with and without methylene bisacrylamide as crosslinker (0 and 3%). Several parameters and properties were studied to evaluate their performance as oil/water separators. Many parameters are used, such as residual oil in water, water recovery, separation time, hydrogels coated percentages, swelling parameters, mechanical properties, microscopic and photographic images, and scanning electron microscopy. The results showed that water recovery (87-97), Separation efficiency (96.2-99.6 %), separation time (6-9.5 min.), hydrogels coated percentages (18-23 %), water content (70-97 %), and

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Effect of water absorption on some mechanical and physical properties of epoxy/polyurethane blend reinforced with nano silica powder
...Show More Authors

The aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.

View Publication
Crossref (2)
Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin
...Show More Authors

Abstract 

In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA) has higher resistance erosion than composites reinforced with carrot powder and sawdust  at 30cm , angle 60

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Materials Today: Proceedings
Shear strength of steel fibre RC beams under repeated loads
...Show More Authors

Scopus (1)
Scopus Clarivate Crossref