There are many aims of this book: The first aim is to develop a model equation that describes the spread of contamination through soils which can be used to determine the rate of environmental contamination by estimate the concentration of heavy metals (HMs) in soil. The developed model equation can be considered as a good representation for a problem of environmental contamination. The second aim of this work is to design two feed forward neural networks (FFNN) as an alternative accurate technique to determine the rate of environmental contamination which can be used to solve the model equation. The first network is to simulate the soil parameters which can be used as input data in the second suggested network, while the second network simulates to estimate the concentration of heavy metals. The third aim is to develop a conceptual theory of training stage of neural networks from the perspective of functional analysis and optimization methods. Within this formulation, learning means to solve a variational problem by minimizing a performance function associated to the neural network. The choice of the objective functional depends on the particular application. On the other side, we suggest modification of the performance function to improve the generalization of the suggested networks and to treat the early stopping and local minima problems. The fourth aim is to compare the performance of aforementioned algorithms with regard to predicting ability. Then applied the suggested technique to estimate the concentration of heavy metals such as: Copper(Cu), Lead(Pb), Cadmium(Cd), Cobalt(Co), Zinc(Zn) and Nickel(Ni) in Baghdad soils. First, sixty four soil samples were selected from a phytoremediated contaminated site located in some zones in Baghdad city (residential, industrial, commercial, agricultural and main roads). Second, a series of measurements were performed on the soil samples and analyzed measuring of concentrations for heavy metals using devices such as : Atomic Absorption Spectrophotometer (AAS), X-Ray Fluorescence (XRF) and Inductively Coupled Plasma-Mass Spectrometry (ICP- MS) to get initial concentrations for those heavy metals. Third, simulate and train the suggested networks to get the concentration of heavy metals. The performance of the suggested networks was compared with the traditional laboratory inspecting using the training and test data sets. The results of this book show that the suggested networks trained on experimental measurements can be successfully applied to the rapid and accuracy estimation of concentration of heavy metals. Finally, we suggest some methods for the treatment of contaminated soil by using some herbal plants
The large number of failure in electrical power plant leads to the sudden stopping of work. In some cases, the necessary reserve materials are not available for maintenance which leads to interrupt of power generation in the electrical power plant unit. The present study, deals with the determination of availability aspects of generator in unit 5 of Al-Dourra electric power plant. In order to evaluate this generator's availability performance, a wide range of studies have been conducted to gather accurate information at the level of detail considered suitable to achieve the availability analysis aim. The Weibull Distribution is used to perform the reliability analysis via Minitab 17, and Artificial Neural Networks (ANNs) by approaching o
... Show MoreThis research aims to review the importance of estimating the nonparametric regression function using so-called Canonical Kernel which depends on re-scale the smoothing parameter, which has a large and important role in Kernel and give the sound amount of smoothing .
We has been shown the importance of this method through the application of these concepts on real data refer to international exchange rates to the U.S. dollar against the Japanese yen for the period from January 2007 to March 2010. The results demonstrated preference the nonparametric estimator with Gaussian on the other nonparametric and parametric regression estima
... Show MoreThis work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective range of the catalyst –to- oil ratio parameter ( 2, 2.5, 3 and 3.5) respectively. The conversion of heavy vacuum gas
... Show MoreEvaluating the behavior of a ring foundation resting on multi-layered soil is one of the important issues facing civil engineers. Many researchers have studied the behavior of ring foundation rests on multi-layered soil with vertical loads acting on the foundation. In real life ring foundation can be subjected to both vertical and horizontal loads at the same time due to wind or the presence of soil. In this research, the behavior of ring footing subjected to inclined load has been studied using PLAXIS software. Furthermore, the effect of multi-layered soil has been simulated in the model. The results showed that both vertical and horizontal stresses are mainly affected when the inclination angle of the load exceeded 45 degrees with a reduc
... Show MoreSemiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which consisted of parametric component and nonparametric component in order to estimate the parametric component that have certain properties depend on the assumptions concerning the parametric component, where the absence of assumptions, parametric component will have several problems for example multicollinearity means (explanatory variables are interrelated to each other) , To treat this problem we use
... Show MoreLearning programming is among the top challenges in computer science education. A part of that, program visualization (PV) is used as a tool to overcome the high failure and drop-out rates in an introductory programming course. Nevertheless, there are rising concerns about the effectiveness of the existing PV tools following the mixed results derived from various studies. Student engagement is also considered a vital factor in building a successful PV, while it is also an important part of the learning process in general. Several techniques have been introduced to enhance PV engagement; however, student engagement with PV is still challenging. This paper employed three theories—constructivism, social constructivism and cognitive load t
... Show MoreIn general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o
... Show MoreExtensive evaluation of 76 women with polycystic ovary syndrome compared with 25 fertile women as control group was achieved by routine investigations and hormonal study of each female which were done in one period during the menstrual cycle. Then the women with PCOS have been divided into 2 groups according to their menstrual cycle (irregular menstrual cycle) during assessing their hormonal profiles as follow:- 1- (54) Patients with oligomenorrhea. 2- (22) Patients with menorrhea. This study shows that the women with PCOs have different clinical features taken from a history of disease of all of the women. Those features were distributed as follow: 57.92% of them suffer from hirsutism. 19.24% suffer from irregular menstr
... Show MoreEstimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate
... Show More