Preferred Language
Articles
/
loZwvYYBIXToZYALq7R9
Evaluating the Behavior of Ring Footing on Two-Layered Soil Subjected to Inclined Load
...Show More Authors

Evaluating the behavior of a ring foundation resting on multi-layered soil is one of the important issues facing civil engineers. Many researchers have studied the behavior of ring foundation rests on multi-layered soil with vertical loads acting on the foundation. In real life ring foundation can be subjected to both vertical and horizontal loads at the same time due to wind or the presence of soil. In this research, the behavior of ring footing subjected to inclined load has been studied using PLAXIS software. Furthermore, the effect of multi-layered soil has been simulated in the model. The results showed that both vertical and horizontal stresses are mainly affected when the inclination angle of the load exceeded 45 degrees with a reduction of (40-80) % when they compared to those with an inclination angle of 0 degrees. Furthermore, the bending moment and shear forces within the footing were affected by the ratio of inner diameter to the outer diameter and by the inclination angle of the load.

Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
The Optimum Reinforcement Layer Number for Soil under the Ring Footing Subjected to Inclined Load
...Show More Authors

The primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent of the

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Evaluation the behavior of Ring Footing on Gypseous Soil Subjected to Eccentric and Inclined Loads
...Show More Authors

An extensive program of laboratory testing was conducted on ring footing rested on gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59%. There are limited researches available, and even fewer have been done experimentally to understand how to ring footings behave; almost all the previous works only concern the behavior of ring footing under vertical loads, Moreover, relatively few studies have examined the impact of eccentric load and inclined load on such footing. In this study, a series of tests, including dry and wet tests, were carried out using a steel container (600×600×600) mm, metal ring footing (100 mm outer diameter and 40 mm inner diameter) was placed in the m

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
The Optimum Reinforcement Layer Number for Soil under the Ring Footing Subjected to Inclined Load
...Show More Authors

The primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent o

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Optimum Reinforcement Depth Ratio for Sandy Soil Enhancement to Support Ring Footing Subjected to a Combination of Inclined-Eccentric Load
...Show More Authors

This work investigates the impacts of eccentric-inclined load on ring footing performance resting on treated and untreated weak sandy soil, and due to the reduction in the footing carrying capacity due to the combinations of eccentrically-inclined load, the geogrid was used as reinforcement material. Ring radius ratio and reinforcement depth ratio parameters were investigated. Test outcomes showed that the carrying capacity of the footing decreases with the increment in the eccentric-inclined load and footing radius ratio. Furthermore, footing tilt and horizontal displacement increase with increasing the eccentricity and inclination angle, respectively. At the same time, the increment in the horizontal displacement due t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 03 2021
Journal Name
Al-qadisiyah Journal For Engineering Sciences
Bearing Capacity of Square Footing Resting on Layered Soil
...Show More Authors

The bearing capacity of layered soil studies was carried out with various approaches such as experimental, theoretical, numerical, and combination of them. This work is focused on the settlement and bearing capacity of shallow foundations subjected to the vertical load placed on the surface of layered soils. The experimental part was performed by manufacturing soil cubic container (570 mm x 570 mm x 570 mm).  A model square footing of width 60 mm was placed at the surface of the soil bed. The relative density of sand was constant at 60%, and the clay was prepared with a density of 19.2 (kN/m3) and water content of 14.6%. PLAXIS 3D FEM was used to simulate the experimental tests and performing a parametric study. The results showed

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Engineering
Experimental Study on the Behavior of Square-Skirted Foundation Rested on Gypseous soil Under Inclined Load
...Show More Authors

This work investigates experimentally the effect of using a skirt with a square foundation of 100 mm width resting on dry gypseous soil (i.e., loose soil with 33% relative density), and subjected to an inclined load. Previous works did not study the use square skirted foundation rested on gypseous soil and subjected to inclined load. The investigated soil was brought from Tikrit city with 59% gypsum content. Standard physical and chemical tests on selected soil were carried out. Model laboratory tests were carried out to determine the effect of using a skirt with a square foundation on the load-settlement behavior of gypseous soil and subjected to inclined load with various Skirt depth (Ds) to foundation width (B) ratio

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jan 31 2017
Journal Name
Journal Of Engineering
Behavior of Reinforced Concrete Columns Subjected to Axial Load and Cyclic Lateral Load
...Show More Authors

Columns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and  deformations, caused by  spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and  . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables co

... Show More
View Publication Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Behavior of Partially Saturated Cohesive Soil under Strip Footing
...Show More Authors

In this paper, a shallow foundation (strip footing), 1 m in width is assumed to be constructed on fully saturated and partially saturated Iraqi soils, and analyzed by finite element method. A procedure is proposed to define the H – modulus function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program (SoilVision). Then, the soil water characteristic curve is converted to relation correlating the void ratio and matric suction. The slope of the latter relation can be used to define the H – modulus function. The finite element programs SIGMA/W and SEEP/W are then used in the analysis. Eight nodded isoparametric quadrilateral elements are used for modeling

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Journal Of Engineering
Dynamic Behavior of Machine Foundations on layered sandy soil under Seismic Loadings
...Show More Authors

In this paper, a dynamic investigation is done for strip, rectangular and square machine foundation at the top surface of two-layer dry sand with various states (i.e., loose on medium sand and dense on medium sand). The dynamic investigation is performed numerically using finite element programming, PLAXIS 3D. The soil is expected as a versatile totally plastic material that complies with the Mohr-Coulomb yield criterion. A harmonic load is applied at the base with an amplitude of 6 kPa at a frequency of (2 and 6) Hz, and seismic is applied with acceleration – time input of earthquake hit Halabjah city north of Iraq. A parametric study is done to evaluate the influence of changing L/B ratio (Length=12,6,3 m and width=3 m), type of sand

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Feb 28 2019
Journal Name
The Open Civil Engineering Journal
Experimental Investigation of Skirt Footing Subjected to Lateral Loading
...Show More Authors
Background:

The skirt foundation is one of the powerful types of foundations to resist the lateral loads produced from natural forces, such as earthquakes and wind action, or from the type of structures, such as oil platforms and offshore wind turbines.

Objective and Methodology:

This research experimentally investigated the response of skirted footing resting on sandy soil of different states to lateral applications of loads on a small-scale physical model manufactured for this purpose. The parameters studied are the dista

... Show More
View Publication
Crossref (2)
Crossref