Preferred Language
Articles
/
7heHF5EBVTCNdQwCw5L2
Employing difference technique in some Liu estimators to semiparametric regression model
...Show More Authors

Semiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which consisted of parametric component and nonparametric component in order to estimate the parametric component that have certain properties depend on the assumptions concerning the parametric component, where the absence of assumptions, parametric component will have several problems for example multicollinearity means (explanatory variables are interrelated to each other) , To treat this problem we use a difference based through the use of biased estimators, in order to get less biased and variance estimators therefor we used difference based estimator liu and difference based almost unbiased liu estiomator. throughout studying simulation based upon mean square error, we concluded that difference based almost unbiased liu estiomator is better than difference based estimator liu since it has the smallest mean square error after that we estimate nonparametric component so removing parametric component and estimated Nonparametric using k-nearest neighbor smoother.

Crossref
View Publication
Publication Date
Sat Sep 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
A comparison Of Some Semiparametric Estimators For consumption function Regression
...Show More Authors

    This article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find  that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.

View Publication Preview PDF
Crossref
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
New Versions of Liu-type Estimator in Weighted and non-weighted Mixed Regression Model
...Show More Authors

This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
A comparison of the Semiparametric Estimators model smoothing methods different using
...Show More Authors

In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes  n=40,60,100,variances used σ2=0.5,1,1.5 the results  for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Robust Estimators for Estimate parameters logistic regression model to Binary Response – using simulation)).
...Show More Authors

 

 The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.                                                          

Among the problems that appear as a result of the use of some statistical methods I

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare some wavelet estimators for parameters in the linear regression model with errors follows ARFIMA model.
...Show More Authors

The aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.

View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
NONPARAMETRIC And Semiparametric Bayesian Estimators in survival function analysis
...Show More Authors

 Most statistical research generally relies on the study of the behaviour of different phenomena during specific time periods and the use of the results of these studies in the development of appropriate recommendations and decision-making and for the purpose of statistical inference on the parameters of the statistical distribution of life times in  The technical staff of most of the manufacturers in the research units of these companies deals with censored data, the main objective of the study of survival is the need to provide information that is the basis for decision making and must clarify the problem and then the goals and limitations of this study and that  It may have different possibilities to perform the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
Comparison of Some Suggested Estimators Based on Differencing Technique in the Partial Linear Model Using Simulation
...Show More Authors

In this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized  jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.

View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Bayes estimators of a multivariate generalized hyperbolic partial regression model
...Show More Authors

View Publication
Scopus (1)
Scopus
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compared Some Estimators Ordinary Ridge Regression And Bayesian Ridge Regression With Practical Application
...Show More Authors

Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the  method To address a problem  and  method To address a problem , In this research a comparisons are employed between the biased   method and unbiased   method with Bayesian   using Gamma distribution  method  addition to Ordinary Least Square metho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the Methods of Ridge Regression and Liu Type to Estimate the Parameters of the Negative Binomial Regression Model Under Multicollinearity Problem by Using Simulation
...Show More Authors

The problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline

... Show More
View Publication Preview PDF
Crossref