Researcher Image
سجى محمد حسين علي - Saja Mohammad Hussein
PhD - professor
College of Administration and Economics , Statistics
[email protected]
Qualifications

تطبيق بعض البرامج الاحصائية والتحليل الاحصائي

Responsibility

تدريسية في كلية الادارة والاقتصاد

Awards and Memberships

عضوة في الجمعية العراقية للعلوم الاحصائية عضوة في اتحاد الاحصائيين العرب

Research Interests

ecomometrics , nonparametrics, multivariate , regression, design , sampling , Robust,

Academic Area

PH.D in statistrics (2006)

Teaching

قمت بتدريس بعض مواد لبرمجة والحاسبات والتحليل العددي والتصميم وبحوث العمليات قمت بتدريس مادة مبادئ الاحصاء والقياس الاقتصادي

Supervision

الاشراف على الكثير من رسائل الماجستير والدكتوراه ولحد الان

Publication Date
Sun Oct 01 2017
Journal Name
Diyala Journal For Pure Science
Employing difference technique in some Liu estimators to semiparametric regression model

Semiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which consisted of parametric component and nonparametric component in order to estimate the parametric component that have certain properties depend on the assumptions concerning the parametric component, where the absence of assumptions, parametric component will have several problems for example multicollinearity means (explanatory variables are interrelated to each other) , To treat this problem we use

... Show More
Crossref
View Publication
Publication Date
Mon Jun 05 2023
Estimating the Population Mean in Stratified Random Sampling Using Combined Regression with the Presence of Outliers

In this research, the covariance estimates were used to estimate the population mean in the stratified random sampling and combined regression estimates. were compared by employing the robust variance-covariance matrices estimates with combined regression estimates by employing the traditional variance-covariance matrices estimates when estimating the regression parameter, through the two efficiency criteria (RE) and mean squared error (MSE). We found that robust estimates significantly improved the quality of combined regression estimates by reducing the effect of outliers using robust covariance and covariance matrices estimates (MCD, MVE) when estimating the regression parameter. In addition, the results of the simulation study proved

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Aug 30 2020
Comparison of the performance of some r- (k,d) class estimators with the (PCTP) estimator that used in estimating the general linear regression model in the presence of autocorrelation and multicollinearity problems at the same time "

In the analysis of multiple linear regression, the problem of multicollinearity and auto-correlation drew the attention of many researchers, and given the appearance of these two problems together and their bad effect on the estimation, some of the researchers found new methods to address these two problems together at the same time. In this research a comparison for the performance of the Principal Components Two Parameter estimator (PCTP) and The (r-k) class estimator and the r-(k,d) class estimator by conducting a simulation study and through the results and under the mean square error (MSE) criterion to find the best way to address the two problems together. The results showed that the r-(k,d) class estimator is the best esti

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Comparison of Some Methods for Estimating Parameters of General Linear Model in Presence of Heteroscedastic Problem and High Leverage Points

Linear regression is one of the most important statistical tools through which it is possible to know the relationship between the response variable and one variable (or more) of the independent variable(s), which is often used in various fields of science. Heteroscedastic is one of the linear regression problems, the effect of which leads to inaccurate conclusions. The problem of heteroscedastic may be accompanied by the presence of extreme outliers in the independent variables (High leverage points) (HLPs), the presence of (HLPs) in the data set result unrealistic estimates and misleading inferences. In this paper, we review some of the robust

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Comparison of Some Suggested Estimators Based on Differencing Technique in the Partial Linear Model Using Simulation

In this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized  jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.

Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Feb 29 2024
اداء التصنيف لأوزان لاسو مع انموذج الانحدار اللوجستي الجزائي للبيانات عالية الابعاد

          في البيانات ذات الأبعاد العالية هناك مشكلة عدم معرفة اختيار المتغيرات ذات الاهمية لذلك يعد أداء التصنيف معياراً مهماً لمعرفة اهم المتغيرات الداخلة في النموذج حيث يلخص هذا البحث اداء تصنيف متغير الاستجابة للبيانات عالية الابعاد من خلال تطبيق اوزان مختلفة للاسو مع الوزن المقترح من قبل الباحث مع انموذج الانحدار اللوجستي الجزائي  وتم تطبيق هذه الازوان على بيانات حقيقية تضمنت 1

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2007
مقارنة بعض الطرائق المعلمية واللامعلمية لتصميم القطاعات العشوائية للقياسات المكررة

The repeated measurement design is called a complete randomized block design for repeated measurement when the subject is given the all different treatments , in this case the subject is considered as a block . Many of nonparametric methods were considered like Friedman test (1937) and Koch test(1969) and Kepner&Robinson test(1988) when the assumption of normal distribution of the data is not satisfied .as well as F test  when the assumptions of the analysis of variance is satisfied ,where the observations within blocks are assumed to be equally correlated . The purpose of this paper is to summarize the result of the simulation study for comparing these methods as well as present the suggested

Me

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Sep 01 2010
التحليل الاحصائي لتجارب القياسات المكررة للبيانات المصنفة في حالة معالجتين وثلاث معالجات

من اهداف بعض التجارب هي معرفة تاثير التسلسلات المختلفة لبعض الادوية او التغذية او تجارب التعلم. وفي بعض الاحيان قد تكون الوحدات التجريبية نادرة لهذا نقوم باستخدام الوحدات التجريبية على نحو متكرر. او بسبب الميزانية المحدودة فان صاحب التجربة يخضع كل وحدة تجريبية لاختبارات عديدة ويطلق على هذا النوع من التجارب التي يتم فيها استخدام الوحدات التجريبية (الاشخاص) Subject على نحو متكرر

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Feb 01 2014
Comparison of some robust methods to estimate parameters of partial least squares regression (PLSR)

   The technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.

 There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 01 2017
Compared of estimating two methods for nonparametric function to cluster data for the white blood cells to leukemia patients

 

Abstract:                                        

   We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.

    In this research, I estimate the reliability function of cluster function by using the seemingly unrelate

... Show More
Crossref
View Publication Preview PDF
No Events Found