Flexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best solution. When it is the better one, it replaces with the artificial fish swarm solution from which this solution was improvised. Meanwhile the best improvised solutions are carried over to the Harmony Memory. The objective is to minimize a total completion time (makespan) and to make the proposed approach as a portion of the expert and the intelligent scheduling system for remanufacturing decision support. Harmony search algorithm has demonstrated to be efficient, simple and strong optimization algorithm. The ability of exploration in any optimization algorithm is one of the key points. The obtained optimization results show that the proposed algorithm provides better exploitation ability and enjoys fast convergence to the optimum solution. As well, comparisons with the original artificial fish swarm algorithm demonstrate improved efficiency.
The main objective of this research is to find out the effect of deviation in the aggregate gradients of asphalt mixtures from the Job Mix Formula (JMF) on the general mixture performance. Three road layers were worked on (wearing layer, binder layer, and base layer) and statistical analysis was performed for the data of completed projects in Baghdad city, and the sieve that carried the largest number of deviations for each layer was identified. No.8 sieve (2.36mm), No.50 sieve (0.3mm), and 3/8'' sieve (9.5mm) had the largest number of deviations in the wearing layer, the binder layer, and the base layer respectively. After that, a mixture called Mix 1, was made. This mixture was selected from a number of completed mixtures, and it
... Show MoreThe research aims to identify the concept of green taxes and their role in reducing environmental pollution through the poll of Abnh of taxpayers and employees of the General Authority for taxes totaling 200 individual .autam adoption of the resolution as a tool head for the collection of data and information from the sample and analyzed their responses using a statistical program (spss - 10), and calculating the percentages and the arithmetic mean, standard deviation and research found to a number of conclusions, notably the lack of legislation with the challenges and the difficulty of the existence of a measure or a standard lack of planning for the application of environmental taxes that the state taxation application between the Gene
... Show MoreArtificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreWith the spread of globalization, the need for translators and scholars has grown, as translation is the only process that helps bridge linguistic gaps. Following the emergence of artificial intelligence (AI), a strong competitor has arisen to the translators, sweeping through all scientific and professional fields, including translation sector, with a set of tools that aid in the translation process. The current study aims to investigate the capability of AI tools in translating texts rich in cultural variety from one language to another, specifically focusing on English-Arabic translations, through qualitative analysis to uncover cultural elements in the target language and determine the ability of AI tools to preserve, lose, or alter the
... Show MoreBackground: White spot lesion is the first visible sign of dental caries that is characterized by demineralized lesion underneath an intact surface. Several studies demonstrated that they could be treated using noninvasive techniques like the use of fluoride or casein phospho-peptide and amorphous calcium phosphate. Improvement in aesthetic outcomes by covering the demineralized enamel is one of the advantages of the use of resin infiltration and opal-ustre microabrasion, which are two new techniques that had been used for treatment of white spot lesion. The purpose of this study was to evaluate the impact of resin infiltration and microabrasion in the microhardness of the artificial white spot lesions at various depths. Material and method
... Show More