Chlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via modest reaction barriers. As a result of localization of excess electrons left behind after creation of oxygen vacancies, analogous fission over an oxygen vacant surface systematically necessitates lower energy barriers. Dehydrochlorination of CE and CA molecules preferentially proceeds via a dissociative addition route; however, subsequent desorption of vinyl and ethyl moieties requires less energy than surface assisted β C–H bond breakage. The profound stability of hydrocarbon species on the surface contributes to the observed deactivation of ceria at temperatures as low as 580 K under pyrolytic conditions. Adsorption of an oxygen molecule at an oxygen vacant site initiates decomposition of the adsorbed phenyl moiety. Likewise, adsorbed surface hydroxyl groups serve as the hydrogen source in the observed conversion of CB into benzene. A plausible mechanism for the formation of 1,4-dichlorobenzene incorporates abstraction of a para hydrogen in the CB molecule by an O− surface anion followed by chlorine transfer from the surface. Plotted conversion–temperature profiles via a simplified kinetic model against corresponding experimental profiles exhibit a reasonable agreement. The results from this study could be useful in the ongoing efforts to improve ceria's catalytic capacity for destroying CVOCs.
This study investigated the potential of bacterial culture in bioremediation of gasoline pollutant soils. Klebsiella pneumoniae has shown a tremendous ability in bioremediation of gasoline. K.pneumoniae was isolated from three electrical generator pollutant soils with gasoline in different regions from Baghdad (Abu-Graib, Al-Khadra quarter and Al-Seleikh region. Bacteria was isolated and identified according to biochemical tests, with optimum temperature at 35°C and pH=5.
FTIR spectrum was tested the ability of the K.pneumoniae to biodegrade the gasoline according to the peak areas, which appeared and referred to degrade amino compounds at wave number 3000 cm-1 (2955.23, 2923.47) which refer to the C-H with amines compounds and decre
This research was aimed to evaluate activity of Rosemary volatile oil and Nisin A in vivo and on B. cereus isolated from some canned meat products in vitro. The results showed that the activity of Rosemary volatile oil (2000 µg/ml) and Nisin A (350 µg\ml) attained to 27 and 19 mm inhibitory zone diameter respectively in well diffusion method. The viable plate count from samples of canned meat treated with effective concentration of Rosemary volatile oil and Nisin A were examined. The samples with Rosemary volatile oil was not showed any CFU/g after 9 days of preservation while sample with Nisin A and control observed 49 and 45 CFU/g respectively. In vivo experiment on mice, two weeks after oral dose of Rosemary volatile oil (2000
... Show MoreCharge transfer in styryl dyes STQ-1, STQ-2,and STQ-3 with organic media system has been studied theoretically depending on the Franck- Condon rule and continuum dielectric model . The reorientation energies (eV) were evaluated theoretically depending on dipole momentum, dielectric constant , and refrective index n. The rate constant of charge transfer has been calculated depending on the reorientation energy (eV) ,effective free energy , potential height barrier , and coupling coefficient . A matlap program has been written to calculated the rate constant of charge transfer and other parameter. The results of calculations show that STQ-2 dye is more reaction for charge transfer compare with STQ-1 and STQ-3 dyes
Some specific factors that cause the kinetic compensation effect
during the decomposition CaC03 are identified. The role of the C02 equilibrium pressure is examined in relation to the kinetic compensation effect. This investigation also shows why non - iso thermal experiments have some time necessarily to yield value of activation energy different from the value obtained from isothermal experiments.
Identifying phenolic compounds in some genera belonging in the Amaranthaceae family by HPLC technique
In addition to its basic communicative function, language can be used to imply information that is not actually stated, i.e. addressers do not always state exactly (or directly) what they mean. Such instances fall within the domain of pragmatics in that they have to do with how addressers use language to communicate in a particular situation by implication rather than by direct statement. The researcher attempts to demonstrate that the beauty and the multiple layers of meaning in poetry can be better explored if the addressee looks at the lines from a pragmatic perspective in search for implied meaning. There are many devices that can convey implied meaning in poetry, among which are 'rhetorical', 'figurative' or 'literary' devices. But
... Show MoreThis paper deals with the ideological positioning of the English poet John Donne in a selected poems of his i.e Holy Sonnet X, as regards the theme of death found therein. The researchers adopt an emerging branch of stylistics, called Critical Stylistics, as proposed by Jeffries (2010) in order to uncover the ideologies of the author regarding the topic concerned and how linguistic choices are used to slant ideas. The model is comprised of ten tools of analysis which, upon being applied to the selected data, have shown how the poet exploits language resources in order to pass his ideology and influence his readers. In this paper, the workings of only one tool are presented as applied to a certain portion of the data.
The choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators.
... Show More