Chlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via modest reaction barriers. As a result of localization of excess electrons left behind after creation of oxygen vacancies, analogous fission over an oxygen vacant surface systematically necessitates lower energy barriers. Dehydrochlorination of CE and CA molecules preferentially proceeds via a dissociative addition route; however, subsequent desorption of vinyl and ethyl moieties requires less energy than surface assisted β C–H bond breakage. The profound stability of hydrocarbon species on the surface contributes to the observed deactivation of ceria at temperatures as low as 580 K under pyrolytic conditions. Adsorption of an oxygen molecule at an oxygen vacant site initiates decomposition of the adsorbed phenyl moiety. Likewise, adsorbed surface hydroxyl groups serve as the hydrogen source in the observed conversion of CB into benzene. A plausible mechanism for the formation of 1,4-dichlorobenzene incorporates abstraction of a para hydrogen in the CB molecule by an O− surface anion followed by chlorine transfer from the surface. Plotted conversion–temperature profiles via a simplified kinetic model against corresponding experimental profiles exhibit a reasonable agreement. The results from this study could be useful in the ongoing efforts to improve ceria's catalytic capacity for destroying CVOCs.
The aim of this paper is determine the concentration of the organic oxygen in some organic compounds (Aldehydes ) by the derivative neutron activation analysis technique, and the derivative of the oxygen by the nitrogen equivalent toit and the irradiation of anew sample in flounce (1.73*106 n.cm-2.s-1) by the neutron generator .Then the calculation of the radioactivity which is done by using NaI(Tl) . After that we determine the concentration of nitrogen by calibration curve that includes nitrogen compounds which have apparent chemical and physical characteristics .For comparison the result is done by using keldal method.
The objective of this study was to evaluate a natural bio-insecticide manufacturing from Eucalyptus sp. volatile oil. The use of Eucalyptus sp. against the Backswimmer insect Anisops sardea Herrich-Schaeffer, 1849 predatory of larvae of common carp fish, Cyprinus carpio L., in artificial closed ponds in Babylon province represented a new idea in Iraq. The volatile oil of the Eucalyptus sp. was extracted by hot water method using the Clevenger, three concentrations of 250000, 450000 and 650000 ppm with benzyl benzoate as a stabilizer were used, which has a boiling point of 324OC (slow evaporation) at field experiment.The results of field and laboratory experiments of the extracted volatile oil in different concentrations, showed that
... Show MoreZnO organic hybrid junction (electroluminescence EL device) was fabricated using phase segregation method. ZnO-nanoparticle (NPs) was prepared as a colloidal by self–assembly method of Zinc acetate solution with KOH solution. Nanoparticle is employed to form organic-inorganic hybrid film and generate white light emission, while N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’-diamine (TPD) and polymethyl methacrylate (PMMA) are adopted as the organic matrices. ZnO NPs was used to fabricate TPD: PMMA: ZnO NPs hybrid junction device. The photoluminescence (PL) and electroluminescence (EL) spectra of the TPD: PMMA: ZnO NPs hybrid device provided a broad emission band covering entirely the visible spectrum (∼350-∼700
... Show MoreAnaerobic digestion (AD) is the most common process for dealing with primary and secondary wastewater sludge. In the present work, four pre-treatment methods (ultrasonic, chemical, thermal, and thermo-chemical) are investigated in Al-Rustumya Wastewater Treatment plant in order to find their effect on biogas production and volatile solid removal efficiency during anaerobic digestion.
Two frequencies of ultrasonic wave were used 30 KHz and 50 KHz during the pre-treatment. Sodium hydroxide was added in different amounts to give three pH values of 9, 10 and 11 in chemical pre-treating processes. The sludge was heated at 60oC and 80oC through thermal pre-treatment experiment. Also, the sludge was treated thermo-chemically at 80 oC and pH
The study included the extraction of volatile oil from Mentha piperita which was 1.3 % in the leaves and flowers . Volatile oil of the Mentha piperita leaves had special aromatic odour, pale yellow color, slightly pungent taste . The specific gravity and refractive index were (0.9794) and ( 1.464) respectively. The inhibition activity of the Mentha piperita Volatile oil extracts were studied on some pathogenic microorganisms like Staphylococcus aureus, Salmonella typhi, Escherichia coli, Proteus sp, and Klebsiella pneumoniae . The result showed that the volatile oil had an inhibition effect on the growth of all microorganisms, and it gave the higher inhibition effect on the growth of S. aureus in which the inhibition zone reached to 2
... Show More