Every so often, a confluence of novel technologies emerges that radically transforms every aspect of the industry, the global economy, and finally, the way we live. These sharp leaps of human ingenuity are known as industrial revolutions, and we are currently in the midst of the fourth such revolution, coined Industry 4.0 by the World Economic Forum. Building on their guideline set of technologies that encompass Industry 4.0, we present a full set of pillar technologies on which Industry 4.0 project portfolio management rests as well as the foundation technologies that support these pillars. A complete model of an Industry 4.0 factory which relies on these pillar technologies is presented. The full set of pillars encompasses cyberphysical systems and Internet of Things (IoT), artificial intelligence (AI), machine learning (ML) and big data, robots and drones, cloud computing, 5G and 6G networks, 3D printing, virtual and augmented reality, and blockchain technology. These technologies are based on a set of foundation technologies which include advances in computing, nanotechnology, biotechnology, materials, energy, and finally cube satellites. We illustrate the confluence of all these technologies in a single model factory. This new factory model succinctly demonstrates the advancements in manufacturing introduced by these modern technologies, which qualifies this as a seminal industrial revolutionary event in human history.
The undetected error probability is an important measure to assess the communication reliability provided by any error coding scheme. Two error coding schemes namely, Joint crosstalk avoidance and Triple Error Correction (JTEC) and JTEC with Simultaneous Quadruple Error Detection (JTEC-SQED), provide both crosstalk reduction and multi-bit error correction/detection features. The available undetected error probability model yields an upper bound value which does not give accurate estimation on the reliability provided. This paper presents an improved mathematical model to estimate the undetected error probability of these two joint coding schemes. According to the decoding algorithm the errors are classified into patterns and their decoding
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreThere is confusion between the concept of honesty and credibility arguing that their meaning is the same. ‘Credibility; is derived from the truth which means evidence of honesty, while ‘honesty’ means not lying and matching reality. The study of credibility begins globally at the end of the fifties of the second millennium to see the decline and refrain from reading newspapers, while it was studied in the Arab world in 1987. Global studies find several meanings of the concept of ‘credibility’ such as accuracy, completeness, transfer facts, impartiality, balance, justice, objectivity, trust, honesty, respect the freedom of individuals and community, and taking into account the traditions and norms.
Credibility has two dimens
The study seeks to investigate the effect of Dunn Dunn learning style model on students’ achievement. Besides, the way of developing students’ deductive thinking by testing the null hypothesis: there is no significant difference between experimental group who takes Dunn Dunn model as style in studying geography and control group that follows a traditional method in studying geography at the level of (0,05). Additionally, there is no significant difference between experimental group who takes Dunn Dunn model as style in studying geography and control group that follows a traditional method in studying geography at the level of (0,05) on testing developing deductive thinking skills. The researcher adopted a quasi-experimental posttest
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreConstruction contractors usually undertake multiple construction projects simultaneously. Such a situation involves sharing different types of resources, including monetary, equipment, and manpower, which may become a major challenge in many cases. In this study, the financial aspects of working on multiple projects at a time are addressed and investigated. The study considers dealing with financial shortages by proposing a multi-project scheduling optimization model for profit maximization, while minimizing the total project duration. Optimization genetic algorithm and finance-based scheduling are used to produce feasible schedules that balance the finance of activities at any time w