The main goal of this work is to put a simple model of the spectral energy distribution of binary stars called WW Cha. This model is built up on the extracted data from various telescopes and archives for the target WW Cha stars and then analyzing them using a python environment. The result of the fitting proposes that there are two protoplanetary disks around the WW Cha star, with different physical properties for each disk, such as the size of the inner disk being 10 AU, while the size of the outer disk being 300 AU. The shape of the outer disk is a flaring disk not a flat disk according to the value of the power law for the surface density (1.5). The emission in the disk is caused by small amorphous olivine grains ranging in size from 0.1 to 3000 micrometers.
In the present work, poly methyl methacrylate (PMMA) doped with Rhodamine 6G was prepared. The spectral properties (absorption and fluorescence) of the films were studied at different concentrations (1x10-5, 2x10-5, 5x10-5, 7x10-5, and 1x10-4mol/l). The investigated samples were made in the form of thin films. This was achieved by dissolving a certain weight of PMMA in a fixed volume of chloroform, composite films was with thickness (25.8μm) at room temperature. The achieved results were pointed out that absorption and fluorescence spectra have taken a wide spectral rang so when increased the concentratio
... Show MoreWe wanted to find out how selenium (Se) affects broiler chicken performance, meat physicochemical properties, and selenium deposition in the tissues of broilers. Each of the 96 experimental pens had 30 chickens and included a total of 2,880 one-day-old broilers (Cobb 500 strain). A factorial design of four-by-three (SY + SS) and eight replicates (SY + SS) was used for the 12 experimental treatments, with selenium levels ranging from 0.15 to 0.60 ppm and organic (SY) or inorganic (SS) sources of selenium and their relationship (SY + SS). There were no differences in performance (P > 0.05) across Se levels or sources. 106 g/day of ADFI, 63 g/day of ADG, and 1.6844 kg/kg of FCR were found to be the averaging values for these three parameters:
... Show MoreCdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
Effect of copper doping and thermal annealing on the structural and optical properties of Zn0.5Cd0.5S thin films prepared by chemical spray pyrolysis have been studied. Depositions were done at 250°C on glass substrate. The structural properties and surface morphology of deposited films were studied using X-ray diffraction (XRD) and photomicroscope (PHM) techniques. XRD studies reveal that all films are crystalline tetragonal structure. The film crystallinity are increased with 1% Cu-doping concentration and also increased for the films annealed at 300°C than the other studied cases. The lattice constant 'a' and 'c' varies with doping concentrations from 5.487Å to 5.427Å and 10.871Å to 10.757Å respectively. The grain size attained
... Show MoreIn this paper, we used two monomers, 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) and m,m'-diaminobenzophenone (m, m’-DABP), to produce polyamide acid and then converted it to polyimide (PI). The effects of phosphoric acid (H3PO4) molarity (1, 2, and 3 M) on the structural, thermal, mechanical, and electrical characteristics of the polyimides/polyaniline (PI/PANI) nanocomposites were studied. Two sharp reflection peaks were developed by the addition of PANI to PI. When 3 M H3PO4 is added, the crystalline sharp peak loses some of its intensity. The complex formation of PI/PANI-H3PO4 was confi
... Show More