A chemometric method, partial least squares regression (PLS) was applied for the simultaneous determination of piroxicam (PIR), naproxen (NAP), diclofenac sodium (DIC), and mefenamic acid (MEF) in synthetic mixtures and commercial formulations. The proposed method is based on the use of spectrophotometric data coupled with PLS multivariate calibration. The Spectra of drugs were recorded at concentrations in the linear range of 1.0 - 10 μg mL-1 for NAP and from 1.0 - 20 μg mL-1 for PIR, DIC, and MEF. 34 sets of mixtures were used for calibration and 10 sets of mixtures were used for validation in the wavelength range of 200 to 400 nm with the wavelength interval λ = 1 nm in methanol. This method has been used successfully to quant
... Show MoreA new simultaneous spectrophotometric-kinetic method was developed to determine phenylephrine (PHEN) and tetracycline (TETR) via H-point standard addition method (HPSAM). The proposed procedures rely on the measurements of the difference in the rate of charge-transfer (CT) reaction between each of PHEN and TETR as electron donors with p-Bromanil (p-Br) as an electron acceptor. Different experimental factors which affect the extent of the complex formation were investigated by monitoring the value of absorbance at 446 nm. Time pair of 50 -100 sec was selected and employed, among different examined pairs since it results in the highest accuracy for HPSAM-plot. Linear calibration graphs in the concentration ranges of 10.0-40.0 and 10.0–50.0
... Show MoreThis study's objective is to assess how well UV spectrophotometry can be used in conjunction with multivariate calibration based on partial least squares (PLS) regression for concurrent quantitative analysis of antibacterial mixture (Levofloxacin (LIV), Metronidazole (MET), Rifampicin (RIF) and Sulfamethoxazole (SUL)) in their artificial mixtures and pharmaceutical formulations. The experimental calibration and validation matrixes were created using 42 and 39 samples, respectively. The concentration range taken into account was 0-17 μg/mL for all components. The calibration standards' absorbance measurements were made between 210 and 350 nm, with intervals of 0.2 nm. The associated parameters were examined in order to develop the optimal c
... Show MoreFour rapid, accurate and very simple derivative spectrophotometric techniques were developed for the quantitative determination of binary mixtures of estradiol (E2) and progesterone (PRG) formulated as a capsule. Method I is the first derivative zero-crossing technique, derivative amplitudes were detected at the zero-crossing wavelength of 239.27 and 292.51 nm for the quantification of estradiol and 249.19 nm for Progesterone. Method II is ratio subtraction, progesterone was determined at λmax 240 nm after subtraction of interference exerted by estradiol. Method III is modified amplitude subtraction, which was established using derivative spectroscopy and mathematical manipulations. Method IIII is the absorbance ratio technique, absorba
... Show MoreAbstract
The methods of the Principal Components and Partial Least Squares can be regard very important methods in the regression analysis, whe
... Show MoreSimple and sensitive spectrophotometric method is described based on the coupling reaction of tetracycline hydrochloride(TC. HCl) with diazotized 4-aminopyridine in bulk and pharmaceutical forms. Colored azo dye formed during this reaction is measured at 433 nm as a function of time. Factors affecting the reaction yield were studied and the conditions were optimized. The kinetic study involves initial rate and fixed time (10 minutes) procedures for constructing the calibration graphs to determine the concentration of (TC. HCl). The graphs were linear for both methods in concentration range of 10.0 to 100.0 µg.mL-1. The recommended procedure was applied successfully in the determination of (TC. HCl) in itscommercial formulations.
... Show MoreSimple and sensitive spectrophotometric method is described based on the coupling reaction of tetracycline hydrochloride (TC. HCl) with diazotized 4-aminopyridine in bulk and pharmaceutical forms. Colored azo dye formed during this reaction is measured at 433 nm as a function of time. Factors affecting the reaction yield were studied and the conditions were optimized. The kinetic study involves initial rate and fixed time (10 minutes) procedures for constructing the calibration graphs to determine the concentration of (TC. HCl). The graphs were linear for both methods in concentration range of 10.0 to 100.0 μg.mL-1. The recommended procedure was applied successfully in the determination of (TC. HCl) in its commercial formulations.
A simple, fast, inexpensive and sensitive method has been proposed to screen and optimize experimental factors that effecting the determination of phenylephrine hydrochloride (PHE.HCl) in pure and pharmaceutical formulations. The method is based on the development of brown-colored charge transfer (CT) complex with p-Bromanil (p-Br) in an alkaline medium (pH=9) with 1.07 min after heating at 80 °C. ‘Design of Experiments’ (DOE) employing ‘Central Composite Face Centered Design’ (CCF) and ‘Response Surface Methodology’ (RSM) were applied as an improvement to traditional ‘One Variable at Time’ (OVAT) approach to evaluate the effects of variations in selected factors (volume of 5×10-3 M p-Br, heating time, and temperature) on
... Show MoreThe technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.
There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr
... Show MoreSimple, cheap, sensitive, and accurate kinetic- spectrophotometric method has been developed for the determination of naringenin in pure and supplements formulations. The method is based on the formation of Prussian blue. The product dye exhibits a maximum absorbance at 707 nm. The calibration graph of naringenin was linear over the range 0.3 to 10 µg ml-1 for the fixed time method (at 15 min) with a correlation coefficient (r) and percentage linearity (r2%) were of 0.9995 and 99.90 %, respectively, while the limit of detection LOD was 0.041 µg ml-1. The method was successfully applied for the determination of naringenin in supplements with satisfac
... Show More