Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You only look once”) neural network algorithm, which is an efficient real-time object identification algorithm, an intelligent system was developed in this thesis to distinguish which faces are wearing a mask and who is not wearing a wrong mask. The proposed system was developed based on data preparation, preprocessing, and adding a multi-layer neural network, followed by extracting the detection algorithm to improve the accuracy of the system. Two global data sets were used to train and test the proposed system and worked on it in three models, where the first contains the AIZOO data set, the second contains the MoLa RGB CovSurv data set, and the third model contains a combined data set for the two in order to provide cases that are difficult to identify and the accuracy results that were obtained. obtained from the merging datasets showed that the face mask (0.953) and the face recognition system were the most accurate in detecting them (0.916).
A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.
Long before the pandemic, labour force all over the world was facing the quest of incertitude, which is normal and inherent of the market, but the extent of this quest was shaped by the pace of acceleration of technological progress, which became exponential in the last ten years, from 2010 to 2020. Robotic process automation, work remote, computer science, electronic and communications, mechanical engineering, information technology digitalisation o public administration and so one are ones of the pillars of the future of work. Some authors even stated that without robotic process automation (RPA) included in technological processes, companies will not be able to sustain a competitive level on the market (Madakan et al, 2018). R
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show MoreIn this paper is to introduce the concept of hyper AT-algebras is a generalization of AT-algebras and study a hyper structure AT-algebra and investigate some of its properties. “Also, hyper AT-subalgebras and hyper AT-ideal of hyper AT-algebras are studied. We study on the fuzzy theory of hyper AT-ideal of hyper AT-algebras hyper AT-algebra”. “We study homomorphism of hyper AT-algebras which are a common generalization of AT-algebras.
After studying the reality of application to occupational safety in new Iraqi building projects and sampling the situation wilt that in developed and neighboring countries, researcher found that there is a big gap in the level of safety application conditions, this indicates the need fora quick and clear reference for local engineers to use it on site for safety conditions in their projects . As a case study the monitors work the researcher studied a huge project in the United Arab Emirates.This project considered for safety requirements to highest grades. This case study may be far away from the projects in Iraq, but we hope to rise the Iraqi work level in the near future. After seeing the way of administration work and how they were ra
... Show MoreWe dealt with the nature of the points under the influence of periodic function chaotic functions associated functions chaotic and sufficient conditions to be a very chaotic functions Palace
The Video effect on Youths Value
Systems on Chips (SoCs) architecture complexity is result of integrating a large numbers of cores in a single chip. The approaches should address the systems particular challenges such as reliability, performance, and power constraints. Monitoring became a necessary part for testing, debugging and performance evaluations of SoCs at run time, as On-chip monitoring is employed to provide environmental information, such as temperature, voltage, and error data. Real-time system validation is done by exploiting the monitoring to determine the proper operation of a system within the designed parameters. The paper explains the common monitoring operations in SoCs, showing the functionality of thermal, voltage and soft error monitors. The different
... Show More