The instant global trend towards developing tight reservoir is great; however, development can be very challenging due to stress and geomechanical properties effect in horizontal well placement and hydraulic fracturing design. Many parameters are known to be important to determine the suitable layer for locating horizontal well such as petrophysical and geomechanical properties. In the present study, permeability sensitivity to stress is also considered in the best layer selection for well placement. The permeability sensitivity to the stress of the layers was investigated using measurements of 27 core sample at different confining stress values. 1-D mechanical earth model (MEM) was built and converted to a 3-D full-field geomechanical mode
... Show MoreBuilding numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr
The objective of the conventional well testing technique is to evaluate well- reservoir interaction through determining the flow capacity and well potential on a short-term basis by relying on the transient pressure response methodology. The well testing analysis is a major input to the reservoir simulation model to validate the near wellbore characteristics and update the variables that are normally function of time such as skin, permeability and productivity multipliers.
Well test analysis models are normally built on analytical approaches with fundamental physical of homogenous media with line source solution. Many developments in the last decade were made to increase the resolution of transient response derivation to meet the
... Show MoreGas coning is one of the most serious problems in oil wells. Gas will reach the perforations and be produced with oil. Anyhow there is a certain production rate called critical production rate. The daily production rate should not exceed the critical production rate. In this research ten oil wells have been tested for problem of gas coning for a period of time of eighteen months. The production rates of these Ten oil wells are tabulated in a table exist in this research.
These production rates are considered as critical production rate because no gas coning has been observed in these wells. The critical production rates of these wells don't concide with those obtained from (Meyer, Gardiner, Pirson) method and also they don’t concide
The gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur
A3D geological model was constructed for Al-Sadi reservoir/ Halfaya Oil Field which is discovered in 1976 and located 35 km from Amara city, southern of Iraq towards the Iraqi/ Iranian borders.
Petrel 2014 was used to build the geological model. This model was created depending on the available information about the reservoir under study such as 2D seismic map, top and bottom of wells, geological data & well log analysis (CPI). However, the reservoir was sub-divided into 132x117x80 grid cells in the X, Y&Z directions respectively, in order to well represent the entire Al-Sadi reservoir.
Well log interpretation (CPI) and core data for the existing 6 wells were the basis of the petrophysical model (
... Show MoreRock mechanical properties are critical parameters for many development techniques related to tight reservoirs, such as hydraulic fracturing design and detecting failure criteria in wellbore instability assessment. When direct measurements of mechanical properties are not available, it is helpful to find sufficient correlations to estimate these parameters. This study summarized experimentally derived correlations for estimating the shear velocity, Young's modulus, Poisson's ratio, and compressive strength. Also, a useful correlation is introduced to convert dynamic elastic properties from log data to static elastic properties. Most of the derived equations in this paper show good fitting to measured data, while some equations show scatters
... Show MoreThe main parameter that drives oil industry contract investment and set up economic feasibility study for approving field development plan is hydrocarbon reservoir potential. So a qualified experience should be deeply afforded to correctly evaluate hydrocarbons reserve by applying different techniques at each phase of field management, through collecting and using valid and representative data sources, starting from exploration phase and tune-up by development phase. Commonly, volumetric calculation is the main technique for estimate reservoir potential using available information at exploration stage which is quite few data; in most cases, this technique estimate big figure of reserve. In this study