Rock mechanical properties are critical parameters for many development techniques related to tight reservoirs, such as hydraulic fracturing design and detecting failure criteria in wellbore instability assessment. When direct measurements of mechanical properties are not available, it is helpful to find sufficient correlations to estimate these parameters. This study summarized experimentally derived correlations for estimating the shear velocity, Young's modulus, Poisson's ratio, and compressive strength. Also, a useful correlation is introduced to convert dynamic elastic properties from log data to static elastic properties. Most of the derived equations in this paper show good fitting to measured data, while some equations show scatters in correlating the data due to the presence of Calcite, Quartz, and clay in some core samples. Brittleness index (BRI) indicates ductile behavior of the core samples is also studied for the interested reservoir. The results of BRI show that the samplers range from moderate to high brittleness, and the difference in BRI comes from the presence of some minerals, as explained using the X-ray diffraction test (XRD). The proposed correlations are compared to other correlations from literature for validation, and the results of the comparison show good matching that explains the accuracy of the proposed equations.
Tight oil reservoirs have been a concerned of the oil industry due to their substantial influence on oil production. Due to their poor permeability, numerous problems are encountered while producing from tight reservoirs. Petrophysical and geomechanical rock properties are essential for understanding and assessing the fracability of reservoirs, especially tight reservoirs, to enhance permeability. In this study, Saadi B reservoir in Halfaya Iraqi oil field is considered as the main tight reservoir. Petrophysical and geomechanical properties have been estimated using full-set well logs for a vertical well that penetrates Saadi reservoir and validated with support of diagnostic fracture injection test data employing standard equations
... Show MoreTight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreGeomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and runni
IMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD
Carbonate reservoirs are an essential source of hydrocarbons worldwide, and their petrophysical properties play a crucial role in hydrocarbon production. Carbonate reservoirs' most critical petrophysical properties are porosity, permeability, and water saturation. A tight reservoir refers to a reservoir with low porosity and permeability, which means it is difficult for fluids to move from one side to another. This study's primary goal is to evaluate reservoir properties and lithological identification of the SADI Formation in the Halfaya oil field. It is considered one of Iraq's most significant oilfields, 35 km south of Amarah. The Sadi formation consists of four units: A, B1, B2, and B3. Sadi A was excluded as it was not filled with h
... Show MoreHydraulic fracturing is considered to be a vital cornerstone in decision making of unconventional reservoirs. With an increasing level of development of unconventional reservoirs, many questions have arisen regarding enhancing production performance of tight carbonate reservoirs, especially the evaluation of the potential for adapting multistage hydraulic fracturing technology in tight carbonate reservoirs to attain an economic revenue.
In this paper we present a feasibility study of multistage fractured horizontal well in typical tight carbonate reservoirs covering different values of permeability. We show that NPV is the suitable objective function for deciding on the optimum number
Estimation of mechanical and physical rock properties is an essential issue in applications related to reservoir geomechanics. Carbonate rocks have complex depositional environments and digenetic processes which alter the rock mechanical properties to varying degrees even at a small distance. This study has been conducted on seventeen core plug samples that have been taken from different formations of carbonate reservoirs in the Fauqi oil field (Jeribe, Khasib, and Mishrif formations). While the rock mechanical and petrophysical properties have been measured in the laboratory including the unconfined compressive strength, Young's modulus, bulk density, porosity, compressional and shear -waves, well logs have been used to do a compar
... Show More