Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
There are many images you need to large Khoznah space With the continued evolution of storage technology for computers, there is a need nailed required to reduce Alkhoznip space for pictures and image compression in a good way, the conversion method Alamueja
Intrusion detection systems (IDS) are useful tools that help security administrators in the developing task to secure the network and alert in any possible harmful event. IDS can be classified either as misuse or anomaly, depending on the detection methodology. Where Misuse IDS can recognize the known attack based on their signatures, the main disadvantage of these systems is that they cannot detect new attacks. At the same time, the anomaly IDS depends on normal behaviour, where the main advantage of this system is its ability to discover new attacks. On the other hand, the main drawback of anomaly IDS is high false alarm rate results. Therefore, a hybrid IDS is a combination of misuse and anomaly and acts as a solution to overcome the dis
... Show MoreA resume is the first impression between you and a potential employer. Therefore, the importance of a resume can never be underestimated. Selecting the right candidates for a job within a company can be a daunting task for recruiters when they have to review hundreds of resumes. To reduce time and effort, we can use NLTK and Natural Language Processing (NLP) techniques to extract essential data from a resume. NLTK is a free, open source, community-driven project and the leading platform for building Python programs to work with human language data. To select the best resume according to the company’s requirements, an algorithm such as KNN is used. To be selected from hundreds of resumes, your resume must be one of the best. Theref
... Show MoreEnd of the twentieth century witnessed by the technological evolution Convergences between the visual arts aesthetic value and objective representation of the image in the composition of the design of the fabric of new insights and unconventional potential in atypical employment. It is through access to the designs of modern fabrics that address the employment picture footage included several scenes footage from the film, which focuses on research and analytical as a study to demonstrate the elements of the picture and the organization of its rules and how to functioning in the design of fabrics, Thus, it has identified the problem by asking the following: What are the elements of the picture footage and how the functioning of the struct
... Show MoreOne of the important objectives of the varistor is for a sustainable environment and reduce the pollution resulting from the frequent damage of the electrical devices and power station waste. In present work, the influence of Al2O3 additives on the non –linear electrical features of SnO2 varistors, has been investigated, where SnO2 ceramic powder doped with Al2O3 in three rates (0.005, 0.01, and 0.05), the XRD test improved that SnO2 is the primary phase, while CoCr2O4, and Al2O3 represent the secondary phases. The electrical tests of all prepared samples confirmed that the increasing of Al2O3 rates and sintering temperature improves and increase the electrical features, where the best results obtained at Al2O3 (0.05) and 1000℃, the non
... Show MoreCorpus linguistics is a methodology in studying language through corpus-based research. It differs from a traditional approach in studying a language (prescriptive approach) in its insistence on the systematic study of authentic examples of language in use (descriptive approach).A “corpus” is a large body of machine-readable structurally collected naturally occurring linguistic data, either written texts or a transcription of recorded speech, which can be used as a starting-point of linguistic description or as a means of verifying hypotheses about a language. In the past decade, interest has grown tremendously in the use of language corpora for language education. The ways in which corpora have been employed in language pedago
... Show More