Preferred Language
Articles
/
1RbfcYcBVTCNdQwCQEq1
Development of new computational machine learning models for longitudinal dispersion coefficient determination: case study of natural streams, United States
...Show More Authors

Crossref
View Publication
Publication Date
Sat Sep 01 2018
Journal Name
2018 11th International Conference On Developments In Esystems Engineering (dese)
Natural Rivers Longitudinal Dispersion Coefficient Simulation Using Hybrid Soft Computing Model
...Show More Authors

View Publication
Scopus (17)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Agronomy
A Case Study of Potential Reasons of Increased Soil Phosphorus Levels in the Northeast United States
...Show More Authors

Recent phosphorus (P) pollution in the United States, mainly in Maine, has raised some severe concerns over the use of P fertilizer application rates in agriculture. Phosphorus is the second most limiting nutrient after nitrogen and has damaging impacts on crop yield if found to be deficient. Therefore, farmers tend to apply more P than is required to satisfy any P loss after its application at planting. Several important questions were raised in this study to improve P efficiency and reduce its pollution. The objective of this study was to find potential reasons for P pollution in water bodies despite a decrease in potato acreage. Historically, the potato was found to be responsible for P water contamination due to its high P sensitivity a

... Show More
View Publication
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Oct 28 2022
Journal Name
Political Sciences Journal
A future view for the political systems of the Arab Gulf states After normalization ... the United Arab Emirates as a case study
...Show More Authors

The dangers of (Israel's) integration with Arab countries in the middle east region will threaten the Arab security structure dimension, which the latter makes the Arab regional system vulnerable for distortion due to its nominal and symbolic value which is far from the Arab self and questioning with its effectiveness in comparing with the real capabilities to Arab countries in achieving the common targets. So, how to assess the different problems that began to hit the structure of the Arab regional system? and how to pledge an allegiance after putting forward what is known as the American Deal of the Century for the administration of former US President Donald Trump for making another step toward normalization with (Israel)?. The reveal

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 15 2020
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Optimizing Linear Models via Sinusoidal Transformation for Boosted Machine Learning in Medicine: Sinusoidal Optimization of Linear Models
...Show More Authors

Background: Machine learning relies on a hybrid of analytics, including regression analyses. There have been no attempts to deploy a sinusoidal transformation of data to enhance linear regression models.
Objectives:
We aim to optimize linear models by implementing sinusoidal transformation to minimize the sum of squared error.
Methods:
We implemented non-Bayesian statistics using SPSS and MatLab. We used Excel to generate 30 trials of linear regression models, and each has 1,000 observations. We utilized SPSS linear regression, Wilcoxon signed-rank test, and Cronbach’s alpha statistics to evaluate the performance of the optimization model. Results: The sinusoidal

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Sentiment analysis in arabic language using machine learning: Iraqi dialect case study
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue May 09 2023
Journal Name
Buildings
Identification of Desired Qualifications for Construction Safety Personnel in the United States
...Show More Authors

Construction is a hazardous industry with a high number of injuries. Prior research found that many industry injuries can be prevented by implementing an effective safety plan if prepared and maintained by qualified safety personnel. However, there are no specific guidelines on how to select qualified construction safety personnel and what criteria should be used to select an individual for a safety position in the United States (US) construction industry. To fill this gap in knowledge, the study goal was to identify the desired qualifications of safety personnel in the US construction industry. To achieve the study goal, the Delphi technique was used as the main methodology for determining the desired qualifications for constructio

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
A New Efficient Hybrid Approach for Machine Learning-Based Firefly Optimization
...Show More Authors

     Optimization is the task of minimizing or maximizing an objective function f(x) parameterized by x. A series of effective numerical optimization methods have become popular for improving the performance and efficiency of other methods characterized by high-quality solutions and high convergence speed. In recent years, there are a lot of interest in hybrid metaheuristics, where more than one method is ideally combined into one new method that has the ability to solve many problems rapidly and efficiently. The basic concept of the proposed method is based on the addition of the acceleration part of the Gravity Search Algorithm (GSA) model in the Firefly Algorithm (FA) model and creating new individuals. Some stan

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Political Sciences Journal
The nature of the relationship between the states and the union in the United States of America
...Show More Authors

Knowing the nature of the relationship in federal systems lies in studying the political, social, economic and cultural forces, for their role in laying the foundations and the federal system. No matter how important the pillars of that system are, and through this research, we will learn how the political elites were able to crystallize this unique system, until it became one of the political systems that some countries seek to copy and apply its experience.

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Proposed Security Models for Node-level and Network-level Aspects of Wireless Sensor Networks Using Machine Learning Techniques
...Show More Authors

     As a result of the pandemic crisis and the shift to digitization, cyber-attacks are at an all-time high in the modern day despite good technological advancement. The use of wireless sensor networks (WSNs) is an indicator of technical advancement in most industries. For the safe transfer of data, security objectives such as confidentiality, integrity, and availability must be maintained. The security features of WSN are split into node level and network level. For the node level, a proactive strategy using deep learning /machine learning techniques is suggested. The primary benefit of this proactive approach is that it foresees the cyber-attack before it is launched, allowing for damage mitigation. A cryptography algorithm is put

... Show More
View Publication Preview PDF
Scopus Crossref