Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
Baghdad Metro is a vital project to fulfill the rapidly increased traffic volume requirements. The proposed metro will connect both sides of Baghdad City, passing under the Tigris River. This study is employed finite elements software (PLAXIS 3D) to evaluate the seepage force developed around the sub-river segment during different construction stages and for other water levels of Tigris. The study found that when the water level changes from maximum to minimum, the developed seepage force decreases by (8 to 13%) and (22 to 27%) respectively. The seepage forces were found to be maximum during the excavation stage. The concrete lining process led to a noticeable reduction in seepage forces at all locations. The study also
... Show MoreSoil movement resulting due unsupported excavation nearby axially loaded piles imposes significant structural troubles on geotechnical engineers especially for piles that are not designed to account for loss of lateral confinement. In this study the field excavation works of 7.0 m deep open tunnel was continuously followed up by the authors. The work is related to the project of developing the Army canal in the east of Baghdad city in Iraq. A number of selected points around the field excavation are installed on the ground surface at different horizontal distance. The elevation and coordinates of points are recorded during 23 days with excavation progress period. The field excavation process was numerically simulated by using the finite
... Show MoreAbstract
The current research is attempt to test the reflection of the lean management on the human resources management practices of two of the most important communication companies operating in Iraq (`Zain & Asia cell), The research aims to Determine the extent of adoption of the lean management approach in the two researched companies, as it improving human resource management practices. The research problem represented in the existence of lack of in some aspects of the application the lean management approach in service sector and neglecting the impact of its tools on the human resource management practices. For this purpose three principle research hypotheses has been formulated, first there is a correlation rel
... Show MoreThe current research focuses on the extent to which the strategic orientation(entrepreneurial orientation, customer orientation, technology orientation, learning orientation, and investment orientation) affects the learning organization (building common vision, systemic thinking, personal dominance, mental models, team learning)The first hypothesis to test the connection relation between research variables and The second hypothesis was to test the relationship between these variables. In order to ascertain the validity of the hypotheses, the research was based on a questionnaire questionnaire prepared according to a number of In addition to building a fifth sub-variable for the strategic orientation (investment orientation) based
... Show MoreThe study aims to design an electronic puppet educational theater by Camtasia studio and identify the effectiveness in learning some of the artistic gymnastics skills for first grade, the research curriculum is experimental by designing two equal groups, and the research sample first grade students are distributed among 4 grade, and by the pumpkin determines two divisions (15 from each) representing the experimental group and control group, the main experiment conducted for 8 weeks by two educational units per week after which the post-tests were conducted, SPSS was used to process the results, and it was found that the electronic puppet educational theater contributed by making the learning process enjoyable and interesting and meeting the
... Show More