With growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to estimate gas. Usually during production three variables are readily accessible: production rate, production time, and pressure-volume-temperature properties. This paper develops an analytical approach derived from the dynamic material balance proposing a new methodology to calculate pseudo time, with an interactive technique. This model encompasses pseudo functions accounting for pressure dependent fluid and rock variables. With the dynamic material balance yielding weak results in the linear flow regimes, an additional methodology derived from the volumetric tank model has been taken into consideration whereby equivalent drainage area is linked to total reservoir area. It has been shown even with short production data this volumetric approach yields accurate results. This proposed methodology has been validated against previous literature and additional cases considered to determine the sensitivity of each of it to reservoir parameters. Finally, it is shown that this method works for both fractured and unfractured wells in tight gas reservoirs, however, it is sensitive to the quantity of data based within the pseudo steady state flow period.
In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.
The petroleum industry, which is one of the pillars of the national economy, has the potential to generate vast wealth and employment possibilities. The transportation of petroleum products is complicated and changeable because of the hazards caused by the corrosion consequences. Hazardous chemical leaks caused by natural disasters may harm the environment, resulting in significant economic losses. It significantly threatens the aim for sustainable development. When a result, determining the likelihood of leakage and the potential for environmental harm, it becomes a top priority for decision-makers as they develop maintenance plans. This study aims to provide an in-depth understanding of the risks associated with oil and gas pipeli
... Show MoreThe performance of H2S sensor based on poly methyl methacrylate (PMMA)-CdS nanocomposite fabricated by spray pyrolysis technique has been reported. XRD pattern diffraction peaks of nano CdS has been indexed to the hexagonally wurtzite structured The nanocomposite exhibits semiconducting behavior with optical energy gap of4.06eV.SEM morphology appears almost tubes like with CdS/PMMA network. That means the addition of CdS to polymer increases the roughness in the film and provides high surface to volume ratio, which helps gas molecule to adsorb on these tubes. The resistance of PMMA-CdS nanocomposite showed a considerable change when exposed to H2S gas. Fast response time to detect H2S gas was achieved by using PMMA-CdS thin film sensor. The
... Show MoreDetection moving car in front view is difficult operation because of the dynamic background due to the movement of moving car and the complex environment that surround the car, to solve that, this paper proposed new method based on linear equation to determine the region of interest by building more effective background model to deal with dynamic background scenes. This method exploited the permitted region between cars according to traffic law to determine the region (road) that in front the moving car which the moving cars move on. The experimental results show that the proposed method can define the region that represents the lane in front of moving car successfully with precision over 94%and detection rate 86
... Show MoreIn this project we analyze data of a large sample of gas rich dwarfs galaxies including; Low Surface Brightness Galaxies (LSBGs), Blue Compact Galaxies (BCGs), and dwarfs Irregulars (dIr). We then study the difference between properties of these galaxies in the range of radio frequencies (B-band). The data are available in HIPASS catalogue and McGaugh’s Data Page. We depended also NASA/IPACExtragalactic Databes web site http://ned.ipac.caltech.edu in the data reduction. We measured the gas evolution (HI mass), gas mass-to-luminosity ratio, and abundance of the elements such as the oxygen abundance for these galaxies. Our results show a
... Show MoreSemiconductor-based metal oxide gas detector of five mixed from zinc chloride Z and tin chloride S salts Z:S ratio 0, 25, 50, 75 and 100% were fabricated on glass substrate by a spray pyrolysis technique. With thickness were about 0.2 ±0.05 μm using water soluble as precursors at a glass substrate temperature 500 ºC±5, 0.05 M, and their gas sensing properties toward CH4, LPG and H2S gas at different concentration (10, 100, 1000 ppm) in air were investigated at room temperature which related with the petroleum refining industry.
Furthermore structural and morphology properties were scrutinize. Results shows that the mixing ratio affect the composition of formative oxides were (ZnO, Zn2SnO4, Zn2SnO4+ZnSnO3, ZnSnO3, SnO2) ratios ment
The increasing population growth resulting in the tremendous increase in consumption of fuels, energy, and petrochemical products and coupled with the depletion in conventional crude oil reserves and production make it imperative for Nigeria to explore her bitumen reserves so as to meet her energy and petrochemicals needs. Samples of Agbabu bitumen were subjected to thermal cracking in a tubular steel reactor operated at 10 bar pressure to investigate the effect of temperature on the cracking reaction. The gas produced was analyzed in a Gas Chromatograph while the liquid products were subjected to Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Heptane was the dominant gas produced in bitumen cracking at all temperatures and the r
... Show More