With growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to estimate gas. Usually during production three variables are readily accessible: production rate, production time, and pressure-volume-temperature properties. This paper develops an analytical approach derived from the dynamic material balance proposing a new methodology to calculate pseudo time, with an interactive technique. This model encompasses pseudo functions accounting for pressure dependent fluid and rock variables. With the dynamic material balance yielding weak results in the linear flow regimes, an additional methodology derived from the volumetric tank model has been taken into consideration whereby equivalent drainage area is linked to total reservoir area. It has been shown even with short production data this volumetric approach yields accurate results. This proposed methodology has been validated against previous literature and additional cases considered to determine the sensitivity of each of it to reservoir parameters. Finally, it is shown that this method works for both fractured and unfractured wells in tight gas reservoirs, however, it is sensitive to the quantity of data based within the pseudo steady state flow period.
The chromatographic behaviour of liquid crystalline compounds benzylidene-p-aminobenzoic acid and 4-(p-methyl benzylidene)-p-aminobenzoic acid as stationary phases for the separation of dimethylphenol isomers was investigated. These isomers were analysed on benzylidene-p-aminobenzoic acid within a nematic range of 169-194 ◦C with a temperature interval of 5 ◦C. Better peak resolution was at a column temperature of 190 ◦C. The analysis was repeated on a 4-(p-methyl benzylidene)-p-aminobenzoic acid column at a nematic temperature of 256 ◦C, which represented the end of the nematic range, and gave the optimum peak resolution. It was found that isomer better separation was obtained at 20% loading for both liquid crystal materials. Other
... Show More2 - 5,5 cm mosquito fishes (Gambusia affinis) were collected from brooks of Baghdad university . This study aimed to identify the histological structure and embryonic development of the gas bladder . The results revealed that the gas bladder of the adult fish consists of single chamber, paraphysoclistous , and its wall consist of three layers. The primordium of the gas bladder appears in 2,5 mm fish embryo as an evagination from the right side of endoderm of foreguts wall. This primordium consists of two thecae, inner, is simple columnar epithelium and outer originates from undifferentiated mesoderm. Simultaneously with the appearance of gas gland in the ventral side of the sac in 4 mm embryo, morphological and histological chan
... Show MoreThe rate of gas induction was measured in gas-inducing type mechanically agitated contactors provided with two impellers. A reactor of 0.5 m i.d. was used with a working capacity of 60 liters of liquid. Tap water was used as the liquid phase, and air was used as the gas phase. The bioreactor mixing system consists of two equal diameter stirrers; the top impeller is shrouded-disk/curved-blade turbine with six evacuated bending blades, while the bottom impeller was disk turbine. The impeller speed was varied in the range of 50 to 800 rpm. The ratio of impeller diameter to tank diameter (D/T) and the submergence (S) of upper impeller from the top were varied. The effects of clearance of lower impeller from the tank bottom (C2) an
... Show MoreIn this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreIn this work, the effect of partial amounts of gases in gas mixture of a CW CO2 laser on the output power was investigated. Also their effect on the condition determining the glow-discharge self-sustaining required for pumping the active medium was studied. Two fit relations were derived to predict the output laser power and the electric field to unit pressure ratio as functions to the partial amounts of gases. Results presented in this work could be used fruitfully to determine some of the optimum operational conditions of glow-discharge low-power CW CO2 lasers.
Nanostructural cupric oxide (CuO) films were prepared on Si and glass substrate by pulsed laser deposition technique (PLD) using laser Nd:YAG, using different laser pulses energies from 200 to 600 mJ. The X-ray diffraction pattern (XRD) of the films showed a polycrystalline structure with a monoclinic symmetry and preferred orientation toward (111) plane with nano structure. The crystallite size was increasing with increasing of laser pulse energy. Optical properties was characterized by using UV–vis spectrometer in the wave lengthrange (200-1100) nm at room temperature. The results showed that the transmission spectrum decreases with the laser pulses energy increase. Sensitivity of NO2 gas at different operating temperatures, (50°C,
... Show MoreThe optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of
... Show MoreThere are many aims of this book: The first aim is to develop a model equation that describes the spread of contamination through soils which can be used to determine the rate of environmental contamination by estimate the concentration of heavy metals (HMs) in soil. The developed model equation can be considered as a good representation for a problem of environmental contamination. The second aim of this work is to design two feed forward neural networks (FFNN) as an alternative accurate technique to determine the rate of environmental contamination which can be used to solve the model equation. The first network is to simulate the soil parameters which can be used as input data in the second suggested network, while the second network sim
... Show More