Virtual reality, VR, offers many benefits to technical education, including the delivery of information through multiple active channels, the addressing of different learning styles, and experiential-based learning. This paper presents work performed by the authors to apply VR to engineering education, in three broad project areas: virtual robotic learning, virtual mechatronics laboratory, and a virtual manufacturing platform. The first area provides guided exploration of domains otherwise inaccessible, such as the robotic cell components, robotic kinematics and work envelope. The second promotes mechatronics learning and guidance for new mechatronics engineers when dealing with robots in a safe and interactive manner. And the thir
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreIn this research, we did this qualitative and quantitative study in order to improve the assay of aspirin colorimetrically using visible spectrophotometer. This method depends on aqueous hydrolysis of aspirin and then treating it with the ferric chloride acidic solution to give violet colored complex with salicylic acid, as a result of aspirin hydrolysis, which has a maximum absorption at 530nm. This procedure was applied to determine the purity of aspirin powder and tablet. The results were approximately comparative so that the linearity was observed in the high value of both correlation coefficient (R= 0.998) and Determination Coefficient or Linearity (R2= 0.996) while the molar absorpitivity was 1.3× 103 mole
Autorías: Mustafa Abdulamir Hussain, Ahmed Sebeaatea Almujamay, Riyadh khaleel khammas. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 5, 2022. Artículo de Revista en Dialnet.
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
Tin oxide was deposited by using vacuum thermal method on silicon wafer engraved by Computer Numerical Controlled (CNC) Machine. The inscription was engraved by diamond-made brine. Deep 0.05 mm in the form of concentric squares. Electrical results in the dark were shown high value of forward current and the high value of the detection factor from 6.42 before engraving to 10.41 after engraving. (I-V) characters in illumination with powers (50, 100, 150, 200, 250) mW/cm2 show Improved properties of the detector, Especially at power (150, 200, 250) mW/cm2. Response improved in rise time from 2.4 μs to 0.72 μs and time of inactivity improved 515.2 μs to 44.2 μs. Sensitivity angle increased at zone from 40o to 65o.
Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.
This paper will try to develop the permeability predictive model for one of Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).
Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua
... Show MoreIn this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint
... Show More