Global Navigation Satellite System (GNSS) is considered to be one of the most crucial tools for different applications, i.e. transportation, geographic information systems, mobile satellite communications, and others. Without a doubt, the GNSS has been widely employed for different scientific applications, such as land surveying, mapping, and precise monitoring for huge structures, etc. Thus, an intense competitive has appeared between companies which produce geodetic GNSS hardware devices to meet all the requirements of GNSS communities. This study aims to assess the performance of different GNSS receivers to provide reliable positions. In this study, three different receivers, which are produced by different manufacturers, were fi
... Show MoreThis work presents a comparison between the Convolutional Encoding CE, Parallel Turbo code and Low density Parity Check (LDPC) coding schemes with a MultiUser Single Output MUSO Multi-Carrier Code Division Multiple Access (MC-CDMA) system over multipath fading channels. The decoding technique used in the simulation was iterative decoding since it gives maximum efficiency at higher iterations. Modulation schemes used is Quadrature Amplitude Modulation QAM. An 8 pilot carrier were
used to compensate channel effect with Least Square Estimation method. The channel model used is Long Term Evolution (LTE) channel with Technical Specification TS 25.101v2.10 and 5 MHz bandwidth bandwidth including the channels of indoor to outdoor/ pedestrian
A field experiment was carried out in one of the orchards of Al-Qassim district in Babel Governorate to find out the ability of a locally manufactured platform to serve palm trees by working in flat and uneven orchard land, palm tree heights of 4, 8, and 12 meters, and it performs pollination, pruning and harvesting services. The time of ascent and descent, the palm service, and the palm/hour productivity were measured. A randomized complete block design with three replications used a split split-plot arrangement. The nature of the land (flat or uneven) represented the main plots, the height of the palm trees (4, 8, 12) meters, the sub-plots, and the palm service operations (pollinati
In general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t
... Show MoreThis paper suggesting a new modern method to evaluate the performance of hotel industry at Jordan instead of the classical method used by the industry and that is Bench Marking , this method can be done by comparing the performance of hotel industry at two serial years which helps in calculating a standard performance .
The industry can use this standard to identify the variance, which make the evaluation of performance easier and support the efforts to develop the hotel industry at all levels and enable to give high quality services to customers.
The study believed that this situation would not be achieved unless the hotel industry will app
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More