Preferred Language
Articles
/
mBZlrIoBVTCNdQwCaKL4
Performance Evaluation for Four Supervised Classifiers in Internet Traffic Classification
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (21)
Crossref (12)
Scopus Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Performance Series Performance Metrics (*) A case study in the General Company for Cotton Industries
...Show More Authors

The problem of the research is focused on importance limited of Iraq industrial companies in application of scientific measurements of supply chains performance,  The research sought to achieve a group of goals, the most important are , identifying the strengths and weaknesses in the reality of supply chain in General Company for Cotton Industries, The data and information required are gathered from the dependence company, records through the field observations and personal interviews, the research used some quantitative indicators to measure of supply chain performance, The research reached to many conclusions , the most outstanding among them is the existence of a strong inverse correlatio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 31 2014
Journal Name
Al-khwarizmi Engineering Journal
Corrosion Behavior of V2AlC and Cr2AlC Compared with SS 316L in NaOH at Four Temperatures
...Show More Authors

Abstract

      This work involves the manufacturing of MAX phase materials include V2AlC and Cr2AlC using powder metallurgy as a new class of materials which characterized by regular crystals in lattice. Corrosion behavior of these materials was investigated by Potentiostat to estimate corrosion resistance and compared with the most resistant material represented by SS 316L. The experiments were carried out in 0.01N of NaOH solution at four temperatures in the range of 30–60oC. Polarization resistance values which calculated by Stern-Geary equation indicated that the MAX phase materials more resistant than SS 316L. Also cyclic polarization tests confirme

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 10 2020
Journal Name
Int. J. Agricult. Stat. Sci
STUDY EVALUATION AND ANALYSIS OF THE PROPERTIES OF SOME PERFORMANCE STANDARDS FOR AGRICULTURAL TRACTOR AND SORGHUM BICOLOR (L.) MOENCH YIELD
...Show More Authors

A field experiment was conducted in an agricultural field in Al-Hindia district, Karbala governorate in a silty clay soil during the year 2020. The research included a study of two factors, the first is the depth of plowing at two levels, namely 13 and 20 cm, which represented the main blocks. The second is the tire inflation pressure at two levels, namely (70 and 140 kPa), which represented the secondary blocks. Slippage percentage, field efficiency, leaf area, and 300 grain weight were studied. The experiment was carried out using a split-plot system under a Randomized complete block design, at three replications. The tillage depth of 13 cm exceeds/transcend by giving it the least slippage of (11.01%), the highest field efficiency of (50.

... Show More
Publication Date
Tue Dec 03 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
New adaptive satellite image classification technique for al Habbinya region west of Iraq
...Show More Authors

Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Machine Learning And Data Mining In Pattern Recognition
A New Strategy for Case-Based Reasoning Retrieval Using Classification Based on Association
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Wed May 01 2013
Journal Name
Ieee Journal Of Biomedical And Health Informatics
Classification of Finger Movements for the Dexterous Hand Prosthesis Control With Surface Electromyography
...Show More Authors

View Publication
Scopus (306)
Crossref (279)
Scopus Clarivate Crossref