The present research deals with the spatial variance analysis in Jwartadistrict and conducting a comparison on the spatial and seasonal changes of the vegetation cover between (2007-2013) in order to deduce the relationship between the vegetation density and the areas which are exposed to the risk of water erosion by using Plant Variation Index NDVI) C (coefficient and by using Satellite images of Landsat satellite which are taken in 2/7/2007 and Satellite images of Landsat satellite taken in 11/1/ 2013, the programs of remote sensitivity and the Geographic Information Systems.
The study reveals that there is a variance in the density of vegetation cover of the area under study betwee 2007 and 2013. Howev
... Show MoreTrace Elements (Cd, Pb, Cu, Zn, Ni) level were examined in hair of donors from industrial areas, cities and village, and in permanent contact with a polluted workplace environment in lattakia. Hair sample were analyzed for their contents of the trace elements by inductivity coupled plasma- mass spectrometer (ICP- MS). It was found that the contents of (Cd, Pb, Cu, Zn, Ni) in the hair were significantly higher in the industrial areas and cities, while in the village had the lower concentration of elements. Correlation coefficients between the levels of the elements in hair found in this study showed that hair is a good indicator of Environmental Pollution.
A new, simple, rapid and sensitive spectrophotometric method for the determination of sulfamethoxazole in both pure form and pharmaceutical preparations has been reported.The adapted technique based on utilization 4-aminobenzene sulfonic acid as a new modern chromogenic through an oxidative coupling reaction with sulfamethoxazole and potassium iodate in basic media to form orange soluble dye product with absorption maxima at 490 nm. Subject to Beer's law in the range 2–32μg mL-1. The values of molarabsorption coefficient (ε) and correlation coefficient were found to be 9.118 × 103 and0.9999 respectively whereas the Sandels index was
... Show MoreIn our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo
... Show MoreImmune-mediated hepatitis is a severe impendence to human health, and no effective treatment is currently available. Therefore, new, safe, low-cost therapies are desperately required. Berbamine (BE), a natural substance obtained primarily from
This c
Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in
... Show MoreIn many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show MoreThis paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples
... Show More This study is a try to compare between the traditional Schwarzschild’s radius and the equation of Schwarzschild’s radius including the photon’s wavelength that is suggested by Kanarev for black holes to correct the error in the calculation of the gravitational radius where the wavelengths of the electromagnetic radiation will be in our calculation. By using the different wavelengths; from radio waves to gamma ray for arbitrary black holes (ordinary and supermassive).
This paper sheds the light on the vital role that fractional ordinary differential equations(FrODEs) play in the mathematical modeling and in real life, particularly in the physical conditions. Furthermore, if the problem is handled directly by using numerical method, it is a far more powerful and efficient numerical method in terms of computational time, number of function evaluations, and precision. In this paper, we concentrate on the derivation of the direct numerical methods for solving fifth-order FrODEs in one, two, and three stages. Additionally, it is important to note that the RKM-numerical methods with two- and three-stages for solving fifth-order ODEs are convenient, for solving class's fifth-order FrODEs. Numerical exa
... Show More